In situ Raman study of redox state changes of mitochondrial cytochromes in a perfused rat heart

Nadezda Brazhe, Marek Treiman, Barbara Faricelli, Jakob Hedemark Vestergaard, Olga Sosnovtseva

30 Citations (Scopus)

Abstract

We developed a Raman spectroscopy-based approach for simultaneous study of redox changes in c-and b-type cytochromes and for a semiquantitative estimation of the amount of oxygenated myoglobin in a perfused rat heart. Excitation at 532 nm was used to obtain Raman scattering of the myocardial surface of the isolated heart at normal and hypoxic conditions. Raman spectra of the heart under normal pO2 demonstrate unique peaks attributable to reduced c-and b-type cytochromes and oxymyoglobin (oMb). The cytochrome peaks decreased in intensity upon FCCP treatment, as predicted from uncoupling mitochondrial respiration. Conversely, transient hypoxia causes the reversible increase in the intensity of peaks assigned to cytochromes c and c1, reflecting electron stacking proximal to cytochrome oxidase due to the lack of terminal electron acceptor O2. Intensities of peaks assigned to oxy- and deoxyhemoglobin were used for the semiquantitative estimation of oMb deoxygenation that was found to be of approximately 50% under hypoxia conditions.

Original languageEnglish
JournalPLOS ONE
Volume8
Issue number8
Pages (from-to)e70488
Number of pages9
ISSN1932-6203
DOIs
Publication statusPublished - 29 Aug 2013

Fingerprint

Dive into the research topics of 'In situ Raman study of redox state changes of mitochondrial cytochromes in a perfused rat heart'. Together they form a unique fingerprint.

Cite this