TY - JOUR
T1 - Improving Neuromuscular Monitoring and Reducing Residual Neuromuscular Blockade With E-Learning
T2 - Protocol for the Multicenter Interrupted Time Series INVERT Study
AU - Thomsen, Jakob Louis Demant
AU - Mathiesen, Ole
AU - Hägi-Pedersen, Daniel
AU - Skovgaard, Lene Theil
AU - Østergaard, Doris
AU - Engbaek, Jens
AU - Gätke, Mona Ring
N1 - ©Jakob Louis Demant Thomsen, Ole Mathiesen, Daniel Hägi-Pedersen, Lene Theil Skovgaard, Doris Østergaard, Jens Engbaek, Mona Ring Gätke. Originally published in JMIR Research Protocols (http://www.researchprotocols.org), 06.10.2017.
PY - 2017/10
Y1 - 2017/10
N2 - Background: Muscle relaxants facilitate endotracheal intubation under general anesthesia and improve surgical conditions. Residual neuromuscular blockade occurs when the patient is still partially paralyzed when awakened after surgery. The condition is associated with subjective discomfort and an increased risk of respiratory complications. Use of an objective neuromuscular monitoring device may prevent residual block. Despite this, many anesthetists refrain from using the device. Efforts to increase the use of objective monitoring are time consuming and require the presence of expert personnel. A neuromuscular monitoring e-learning module might support consistent use of neuromuscular monitoring devices. Objective: The aim of the study is to assess the effect of a neuromuscular monitoring e-learning module on anesthesia staff's use of objective neuromuscular monitoring and the incidence of residual neuromuscular blockade in surgical patients at 6 Danish teaching hospitals. Methods: In this interrupted time series study, we are collecting data repeatedly, in consecutive 3-week periods, before and after the intervention, and we will analyze the effect using segmented regression analysis. Anesthesia departments in the Zealand Region of Denmark are included, and data from all patients receiving a muscle relaxant are collected from the anesthesia information management system MetaVision. We will assess the effect of the module on all levels of potential effect: staff's knowledge and skills, patient care practice, and patient outcomes. The primary outcome is use of neuromuscular monitoring in patients according to the type of muscle relaxant received. Secondary outcomes include last recorded train-of-four value, administration of reversal agents, and time to discharge from the postanesthesia care unit as well as a multiple-choice test to assess knowledge. The e-learning module was developed based on a needs assessment process, including focus group interviews, surveys, and expert opinions. Results: The e-learning module was implemented in 6 anesthesia departments on 21 November 2016. Currently, we are collecting postintervention data. The final dataset will include data from more than 10,000 anesthesia procedures. We expect to publish the results in late 2017 or early 2018. Conclusions: With a dataset consisting of thousands of general anesthesia procedures, the INVERT study will assess whether an e-learning module can increase anesthetists' use of neuromuscular monitoring.
AB - Background: Muscle relaxants facilitate endotracheal intubation under general anesthesia and improve surgical conditions. Residual neuromuscular blockade occurs when the patient is still partially paralyzed when awakened after surgery. The condition is associated with subjective discomfort and an increased risk of respiratory complications. Use of an objective neuromuscular monitoring device may prevent residual block. Despite this, many anesthetists refrain from using the device. Efforts to increase the use of objective monitoring are time consuming and require the presence of expert personnel. A neuromuscular monitoring e-learning module might support consistent use of neuromuscular monitoring devices. Objective: The aim of the study is to assess the effect of a neuromuscular monitoring e-learning module on anesthesia staff's use of objective neuromuscular monitoring and the incidence of residual neuromuscular blockade in surgical patients at 6 Danish teaching hospitals. Methods: In this interrupted time series study, we are collecting data repeatedly, in consecutive 3-week periods, before and after the intervention, and we will analyze the effect using segmented regression analysis. Anesthesia departments in the Zealand Region of Denmark are included, and data from all patients receiving a muscle relaxant are collected from the anesthesia information management system MetaVision. We will assess the effect of the module on all levels of potential effect: staff's knowledge and skills, patient care practice, and patient outcomes. The primary outcome is use of neuromuscular monitoring in patients according to the type of muscle relaxant received. Secondary outcomes include last recorded train-of-four value, administration of reversal agents, and time to discharge from the postanesthesia care unit as well as a multiple-choice test to assess knowledge. The e-learning module was developed based on a needs assessment process, including focus group interviews, surveys, and expert opinions. Results: The e-learning module was implemented in 6 anesthesia departments on 21 November 2016. Currently, we are collecting postintervention data. The final dataset will include data from more than 10,000 anesthesia procedures. We expect to publish the results in late 2017 or early 2018. Conclusions: With a dataset consisting of thousands of general anesthesia procedures, the INVERT study will assess whether an e-learning module can increase anesthetists' use of neuromuscular monitoring.
U2 - 10.2196/resprot.7527
DO - 10.2196/resprot.7527
M3 - Journal article
C2 - 28986337
SN - 1929-0748
VL - 6
JO - J M I R Research Protocols
JF - J M I R Research Protocols
IS - 10
M1 - e192
ER -