TY - JOUR
T1 - Implementation of droplet-membrane-droplet liquid-phase microextraction under stagnant conditions for lab-on-a-chip applications
AU - Sikanen, Tiina
AU - Pedersen-Bjergaard, Stig
AU - Jensen, Henrik
AU - Kostiainen, Risto
AU - Rasmussen, Knut Einar
AU - Kotiaho, Tapio
PY - 2010/1/25
Y1 - 2010/1/25
N2 - In the current work, droplet-membrane-droplet liquid-phase microextraction (LPME) under totally stagnant conditions was presented for the first time. Subsequently, implementation of this concept on a microchip was demonstrated as a miniaturized, on-line sample preparation method. The performance level of the lab-on-a-chip system with integrated microextraction, capillary electrophoresis (CE) and laser-induced fluorescence (LIF) detection in a single miniaturized device was preliminarily investigated and characterized. Extractions under stagnant conditions were performed from 3.5 to 15 μL sample droplets, through a supported liquid membrane (SLM) sustained in the pores of a small piece of a flat polypropylene membrane, and into 3.5-15 μL of acceptor droplet. The basic model analytes pethidine, nortriptyline, methadone, haloperidol, and loperamide were extracted from alkaline sample droplets (pH 12), through 1-octanol as SLM, and into acidified acceptor droplets (pH 2) with recoveries ranging between 13 and 66% after 5 min of operation. For the acidic model analytes Bodipy FL C5 and Oregon Green 488, the pH conditions were reversed, utilizing an acidic sample droplet and an alkaline acceptor droplet, and 1-octanol as SLM. As a result, recoveries for Bodipy FL C5 and Oregon Green 488 from human urine were 15 and 25%, respectively.
AB - In the current work, droplet-membrane-droplet liquid-phase microextraction (LPME) under totally stagnant conditions was presented for the first time. Subsequently, implementation of this concept on a microchip was demonstrated as a miniaturized, on-line sample preparation method. The performance level of the lab-on-a-chip system with integrated microextraction, capillary electrophoresis (CE) and laser-induced fluorescence (LIF) detection in a single miniaturized device was preliminarily investigated and characterized. Extractions under stagnant conditions were performed from 3.5 to 15 μL sample droplets, through a supported liquid membrane (SLM) sustained in the pores of a small piece of a flat polypropylene membrane, and into 3.5-15 μL of acceptor droplet. The basic model analytes pethidine, nortriptyline, methadone, haloperidol, and loperamide were extracted from alkaline sample droplets (pH 12), through 1-octanol as SLM, and into acidified acceptor droplets (pH 2) with recoveries ranging between 13 and 66% after 5 min of operation. For the acidic model analytes Bodipy FL C5 and Oregon Green 488, the pH conditions were reversed, utilizing an acidic sample droplet and an alkaline acceptor droplet, and 1-octanol as SLM. As a result, recoveries for Bodipy FL C5 and Oregon Green 488 from human urine were 15 and 25%, respectively.
KW - Former Faculty of Pharmaceutical Sciences
U2 - 10.1016/j.aca.2009.11.002
DO - 10.1016/j.aca.2009.11.002
M3 - Journal article
SN - 0003-2670
VL - 658
SP - 133
EP - 140
JO - Analytica Chimica Acta
JF - Analytica Chimica Acta
ER -