TY - JOUR
T1 - Immunologic glycosphingolipidomics and NKT cell development in mouse thymus
AU - Li, Yunsen
AU - Thapa, Prakash
AU - Hawke, David
AU - Kondo, Yuji
AU - Furukawa, Keiko
AU - Furukawa, Koichi
AU - Hsu, Fong-Fu
AU - Adlercreutz, Dietlind
AU - Weadge, Joel
AU - Palcic, Monica M
AU - Wang, Peng G
AU - Levery, Steven B
AU - Zhou, Dapeng
N1 - Keywords: Animals; Galactosyltransferases; Gene Expression; Genomics; Globosides; Glycosphingolipids; Hydrogen-Ion Concentration; Ligands; Mice; Mice, Knockout; Natural Killer T-Cells; Thymus Gland; alpha-Galactosidase; beta-Hexosaminidase beta Chain
PY - 2009
Y1 - 2009
N2 - Invariant NKT cells are a hybrid cell type of Natural Killer cells and T cells, whose development is dependent on thymic positive selection mediated by double positive thymocytes through their recognition of natural ligands presented by CD1d, a nonpolymorphic, non-MHC, MHC-like antigen presenting molecule. Genetic evidence suggested that beta-glucosylceramide derived glycosphingolipids (GSLs) are natural ligands for NKT cells. N-butyldeoxygalactonojirimycin (NB-DGJ), a drug that specifically inhibits the glucosylceramide synthase, inhibits the endogenous ligands for NKT cells. Furthermore, we and others have found a beta-linked glycosphingolipid, isoglobotriaosylceramide (iGb3), is a stimulatory NKT ligand. The iGb3 synthase knockout mice have a normal NKT development and function, indicating that other ligands exist and remain to be identified. In this study, we have performed a glycosphingolipidomics study of mouse thymus, and studied mice mutants which are deficient in beta-hexosaminidase b or alpha-galactosidase A, two glycosidases that are up- and downstream agents of iGb3 turnover, respectively. Our mass spectrometry methods generated a first database for glycosphingolipids expressed in mouse thymus, which are specifically regulated by rate-limiting glycosidases. Among the identified thymic glycosphingolipids, only iGb3 is a stimulatory ligand for NKT cells, suggesting that large-scale fractionation, enrichment and characterization of minor species of glycosphingolipids are necessary for identifying additional ligands for NKT cells. Our results also provide early insights into cellular lipidomics studies, with a specific focus on the important immunological functions of glycosphingolipids.
AB - Invariant NKT cells are a hybrid cell type of Natural Killer cells and T cells, whose development is dependent on thymic positive selection mediated by double positive thymocytes through their recognition of natural ligands presented by CD1d, a nonpolymorphic, non-MHC, MHC-like antigen presenting molecule. Genetic evidence suggested that beta-glucosylceramide derived glycosphingolipids (GSLs) are natural ligands for NKT cells. N-butyldeoxygalactonojirimycin (NB-DGJ), a drug that specifically inhibits the glucosylceramide synthase, inhibits the endogenous ligands for NKT cells. Furthermore, we and others have found a beta-linked glycosphingolipid, isoglobotriaosylceramide (iGb3), is a stimulatory NKT ligand. The iGb3 synthase knockout mice have a normal NKT development and function, indicating that other ligands exist and remain to be identified. In this study, we have performed a glycosphingolipidomics study of mouse thymus, and studied mice mutants which are deficient in beta-hexosaminidase b or alpha-galactosidase A, two glycosidases that are up- and downstream agents of iGb3 turnover, respectively. Our mass spectrometry methods generated a first database for glycosphingolipids expressed in mouse thymus, which are specifically regulated by rate-limiting glycosidases. Among the identified thymic glycosphingolipids, only iGb3 is a stimulatory ligand for NKT cells, suggesting that large-scale fractionation, enrichment and characterization of minor species of glycosphingolipids are necessary for identifying additional ligands for NKT cells. Our results also provide early insights into cellular lipidomics studies, with a specific focus on the important immunological functions of glycosphingolipids.
U2 - 10.1021/pr801040h
DO - 10.1021/pr801040h
M3 - Journal article
C2 - 19284783
SN - 1535-3893
VL - 8
SP - 2740
EP - 2751
JO - Journal of Proteome Research
JF - Journal of Proteome Research
IS - 6
ER -