Identification of the amidase BbdA that initiates biodegradation of the groundwater micropollutant 2,6-dichlorobenzamide (BAM) in Aminobacter sp. MSH1

Jeroen T'Syen, Raffaella Tassoni, Lars H. Hansen, Søren Johannes Sørensen, Baptiste Leroy, Aswini Sekhar, Ruddy Wattiez, René De Mot, Dirk Springael

15 Citations (Scopus)

Abstract

2,6-dichlorobenzamide (BAM) is a recalcitrant groundwater micropollutant that poses a major problem for drinking water production in European countries. Aminobacter sp. MSH1 and related strains have the unique ability to mineralize BAM at micropollutant concentrations but no information exists on the genetics of BAM biodegradation. An amidase-BbdA-converting BAM to 2,6-dichlorobenzoic acid (DCBA) was purified from Aminobacter sp. MSH1. Heterologous expression of the corresponding bbdA gene and its absence in MSH1 mutants defective in BAM degradation, confirmed its BAM degrading function. BbdA shows low amino acid sequence identity with reported amidases and is encoded by an IncP1-β plasmid (pBAM1, 40.6 kb) that lacks several genes for conjugation. BbdA has a remarkably low KM for BAM (0.71 μM) and also shows activity against benzamide and ortho-chlorobenzamide (OBAM). Differential proteomics and transcriptional reporter analysis suggest the constitutive expression of bbdA in MSH1. Also in other BAM mineralizing Aminobacter sp. strains, bbdA and pBAM1 appear to be involved in BAM degradation. BbdA's high affinity for BAM and its constitutive expression are of interest for using strain MSH1 in treatment of groundwater containing micropollutant concentrations of BAM for drinking water production.

Original languageEnglish
JournalEnvironmental Science & Technology (Washington)
Volume49
Issue number19
Pages (from-to)11703-11713
Number of pages11
ISSN0013-936X
DOIs
Publication statusPublished - 26 Aug 2015

Fingerprint

Dive into the research topics of 'Identification of the amidase BbdA that initiates biodegradation of the groundwater micropollutant 2,6-dichlorobenzamide (BAM) in Aminobacter sp. MSH1'. Together they form a unique fingerprint.

Cite this