Identification of Cdca7 as a novel Notch transcriptional target involved in hematopoietic stem cell emergence

Jordi Guiu, Dylan J.M. Bergen, Emma de Pater, Abul B.M.M.K. Islam, Verónica Ayllón, Leonor Gama-Norton, Cristina Ruiz-Herguido, Jessica González, Nuria López-Bigas, Pablo Menendez, Elaine Dzierzak, Lluis Espinosa, Anna Bigas*

*Corresponding author for this work
33 Citations (Scopus)

Abstract

Hematopoietic stem cell (HSC) specification occurs in the embryonic aorta and requires Notch activation; however, most of the Notch-regulated elements controlling de novo HSC generation are still unknown. Here, we identify putative direct Notch targets in the aorta-gonad-mesonephros (AGM) embryonic tissue by chromatin precipitation using antibodies against the Notch partner RBPj. By ChIP-on-chip analysis of the precipitated DNA, we identified 701 promoter regions that were candidates to be regulated by Notch in the AGM. One of the most enriched regions corresponded to the Cdca7 gene, which was subsequently confirmed to recruit the RBPj factor but also Notch1 in AGM cells. We found that during embryonic hematopoietic development, expression of Cdca7 is restricted to the hematopoietic clusters of the aorta, and it is strongly up-regulated in the hemogenic population during human embryonic stem cell hematopoietic differentiation in a Notchdependent manner. Down-regulation of Cdca7 mRNA in cultured AGM cells significantly induces hematopoietic differentiation and loss of the progenitor population. Finally, using loss-of-function experiments in zebrafish, we demonstrate that CDCA7 contributes to HSC emergence in vivo during embryonic development. Thus, our study identifies Cdca7 as an evolutionary conserved Notch target involved in HSC emergence.

Original languageEnglish
JournalJournal of Experimental Medicine
Volume211
Issue number12
Pages (from-to)2411-2423
Number of pages13
ISSN0022-1007
DOIs
Publication statusPublished - 1 Jan 2014
Externally publishedYes

Fingerprint

Dive into the research topics of 'Identification of Cdca7 as a novel Notch transcriptional target involved in hematopoietic stem cell emergence'. Together they form a unique fingerprint.

Cite this