TY - JOUR
T1 - Identification of a c-Jun N-terminal kinase-2-dependent signal amplification cascade that regulates c-Myc levels in ras transformation
AU - Mathiasen, D.P.
AU - Egebjerg, C.
AU - Andersen, S.H.
AU - Rafn, B.
AU - Puustinen, P.
AU - Khanna, A.
AU - Daugaard, M.
AU - Valo, E.
AU - Tuomela, S.
AU - Bøttzauw, T.
AU - Nielsen, Christian Thomas Friberg
AU - Willumsen, B.M.
AU - Hautaniemi, S.
AU - Lahesmaa, R.
AU - Westermarck, J.
AU - Jäättelä, M.
AU - Kallunki, T.
PY - 2012/1/19
Y1 - 2012/1/19
N2 - Ras is one of the most frequently activated oncogenes in cancer. Two mitogen-activated protein kinases (MAPKs) are important for ras transformation: extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase 2 (JNK2). Here we present a downstream signal amplification cascade that is critical for ras transformation in murine embryonic fibroblasts. This cascade is coordinated by ERK and JNK2 MAPKs, whose Ras-mediated activation leads to the enhanced levels of three oncogenic transcription factors, namely, c-Myc, activating transcription factor 2 (ATF2) and ATF3, all of which are essential for ras transformation. Previous studies show that ERK-mediated serine 62 phosphorylation protects c-Myc from proteasomal degradation. ERK is, however, not alone sufficient to stabilize c-Myc but requires the cooperation of cancerous inhibitor of protein phosphatase 2A (CIP2A), an oncogene that counteracts protein phosphatase 2A-mediated dephosphorylation of c-Myc. Here we show that JNK2 regulates Cip2a transcription via ATF2. ATF2 and c-Myc cooperate to activate the transcription of ATF3. Remarkably, not only ectopic JNK2, but also ectopic ATF2, CIP2A, c-Myc and ATF3 are sufficient to rescue the defective ras transformation of JNK2-deficient cells. Thus, these data identify the key signal converging point of JNK2 and ERK pathways and underline the central role of CIP2A in ras transformation.
AB - Ras is one of the most frequently activated oncogenes in cancer. Two mitogen-activated protein kinases (MAPKs) are important for ras transformation: extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase 2 (JNK2). Here we present a downstream signal amplification cascade that is critical for ras transformation in murine embryonic fibroblasts. This cascade is coordinated by ERK and JNK2 MAPKs, whose Ras-mediated activation leads to the enhanced levels of three oncogenic transcription factors, namely, c-Myc, activating transcription factor 2 (ATF2) and ATF3, all of which are essential for ras transformation. Previous studies show that ERK-mediated serine 62 phosphorylation protects c-Myc from proteasomal degradation. ERK is, however, not alone sufficient to stabilize c-Myc but requires the cooperation of cancerous inhibitor of protein phosphatase 2A (CIP2A), an oncogene that counteracts protein phosphatase 2A-mediated dephosphorylation of c-Myc. Here we show that JNK2 regulates Cip2a transcription via ATF2. ATF2 and c-Myc cooperate to activate the transcription of ATF3. Remarkably, not only ectopic JNK2, but also ectopic ATF2, CIP2A, c-Myc and ATF3 are sufficient to rescue the defective ras transformation of JNK2-deficient cells. Thus, these data identify the key signal converging point of JNK2 and ERK pathways and underline the central role of CIP2A in ras transformation.
U2 - 10.1038/onc.2011.230
DO - 10.1038/onc.2011.230
M3 - Journal article
C2 - 21706057
SN - 0950-9232
VL - 31
SP - 390
EP - 401
JO - Oncogene
JF - Oncogene
ER -