TY - JOUR
T1 - CB5C affects the glucosinolate profile in Arabidopsis thaliana
AU - Vik, Daniel
AU - Crocoll, Christoph
AU - Andersen, Tonni Grube
AU - Burow, Meike
AU - Halkier, Barbara Ann
PY - 2016/8/2
Y1 - 2016/8/2
N2 - Cytochrome b5 (CB5) proteins are small heme-binding proteins, that influence cytochrome P450 activity. While only one CB5 isoform is found in mammals, higher plants have several isoforms of these proteins. The roles of the many CB5 isoforms in plants remain unknown. We hypothesized that CB5 proteins support the cytochrome P450 enzymes of plant specialized metabolism and found CB5C from Arabidopsis thaliana to co-express with glucosinolate biosynthetic genes. We characterized the glucosinolate profiles of 2 T-DNA insertion mutants of CB5C, and found that long-chained aliphatic glucosinolates were reduced in one of the mutant lines – a phenotype that was exaggerated upon methyl-jasmonate treatment. These results support the hypothesis, that CB5C influences glucosinolate biosynthesis, however, the mode of action remains unknown. Furthermore, the mutants differed in their biomass response to methyl jasmonate treatment. Thereby, our results highlight the varying effects of T-DNA insertion sites, as the 2 analyzed alleles show different phenotypes.
AB - Cytochrome b5 (CB5) proteins are small heme-binding proteins, that influence cytochrome P450 activity. While only one CB5 isoform is found in mammals, higher plants have several isoforms of these proteins. The roles of the many CB5 isoforms in plants remain unknown. We hypothesized that CB5 proteins support the cytochrome P450 enzymes of plant specialized metabolism and found CB5C from Arabidopsis thaliana to co-express with glucosinolate biosynthetic genes. We characterized the glucosinolate profiles of 2 T-DNA insertion mutants of CB5C, and found that long-chained aliphatic glucosinolates were reduced in one of the mutant lines – a phenotype that was exaggerated upon methyl-jasmonate treatment. These results support the hypothesis, that CB5C influences glucosinolate biosynthesis, however, the mode of action remains unknown. Furthermore, the mutants differed in their biomass response to methyl jasmonate treatment. Thereby, our results highlight the varying effects of T-DNA insertion sites, as the 2 analyzed alleles show different phenotypes.
U2 - 10.1080/15592324.2016.1160189
DO - 10.1080/15592324.2016.1160189
M3 - Journal article
C2 - 27454255
SN - 1559-2316
VL - 11
JO - Plant Signalling & Behavior
JF - Plant Signalling & Behavior
IS - 8
M1 - e1160189
ER -