TY - JOUR
T1 - Hydroxyl and methoxyl derivatives of benzylglucosinolate in Lepidium densiflorum with hydrolysis to isothiocyanates and non-isothiocyanate products
T2 - substitution governs product type and mass spectral fragmentation
AU - Pagnotta, Eleonora
AU - Agerbirk, Niels
AU - Olsen, Carl Erik
AU - Ugolini, Luisa
AU - Cinti, Susanna
AU - Lazzeri, Luca
PY - 2017/4/19
Y1 - 2017/4/19
N2 - A system of benzylic glucosinolates was found and characterized in common pepperweed, Lepidium densiflorum Schrad. The major glucosinolate was the novel 4-hydroxy-3,5-dimethoxybenzylglucosinolate (3,5-dimethoxysinalbin), present at high levels in seeds, leaves, and roots. Medium-level glucosinolates were 3,4-dimethoxybenzylglucosinolate and 3,4,5-trimethoxybenzylglucosinolate. Minor glucosinolates included benzylglucosinolate, 3-hydroxy- and 3-methoxybenzylglucosinolate, 4-hydroxybenzylglucosinolate (sinalbin), the novel 4-hydroxy-3-methoxybenzylglucosinolate (3-methoxysinalbin), and indole-type glucosinolates. A biosynthetic connection is suggested. NMR, UV, and ion trap MS/MS spectral data are reported, showing contrasting MS fragmentation of p-hydroxyls and p-methoxyls. Additional investigations by GC-MS focused on glucosinolate hydrolysis products. Whereas glucosinolates generally yielded isothiocyanates, the dominating 3,5-dimethoxysinalbin with a free p-hydroxyl group produced the corresponding alcohol and syringaldehyde (4-hydroxy-3,5-dimethoxybenzaldehyde). After thermal deactivation of the endogenous myrosinase enzyme, massive accumulation of the corresponding nitrile was detected. This case study points out how non-isothiocyanate glucosinolate hydrolysis products are prevalent in nature and of interest in both plant-pathogen interactions and human health.
AB - A system of benzylic glucosinolates was found and characterized in common pepperweed, Lepidium densiflorum Schrad. The major glucosinolate was the novel 4-hydroxy-3,5-dimethoxybenzylglucosinolate (3,5-dimethoxysinalbin), present at high levels in seeds, leaves, and roots. Medium-level glucosinolates were 3,4-dimethoxybenzylglucosinolate and 3,4,5-trimethoxybenzylglucosinolate. Minor glucosinolates included benzylglucosinolate, 3-hydroxy- and 3-methoxybenzylglucosinolate, 4-hydroxybenzylglucosinolate (sinalbin), the novel 4-hydroxy-3-methoxybenzylglucosinolate (3-methoxysinalbin), and indole-type glucosinolates. A biosynthetic connection is suggested. NMR, UV, and ion trap MS/MS spectral data are reported, showing contrasting MS fragmentation of p-hydroxyls and p-methoxyls. Additional investigations by GC-MS focused on glucosinolate hydrolysis products. Whereas glucosinolates generally yielded isothiocyanates, the dominating 3,5-dimethoxysinalbin with a free p-hydroxyl group produced the corresponding alcohol and syringaldehyde (4-hydroxy-3,5-dimethoxybenzaldehyde). After thermal deactivation of the endogenous myrosinase enzyme, massive accumulation of the corresponding nitrile was detected. This case study points out how non-isothiocyanate glucosinolate hydrolysis products are prevalent in nature and of interest in both plant-pathogen interactions and human health.
KW - Hydrolysis
KW - Isothiocyanates
KW - Lepidium
KW - Molecular Structure
KW - Plant Extracts
KW - Plant Leaves
KW - Seeds
KW - Tandem Mass Spectrometry
KW - Thiocyanates
KW - Thioglucosides
KW - Journal Article
U2 - 10.1021/acs.jafc.7b00529
DO - 10.1021/acs.jafc.7b00529
M3 - Journal article
C2 - 28343387
SN - 0021-8561
VL - 65
SP - 3167
EP - 3178
JO - Journal of Agricultural and Food Chemistry
JF - Journal of Agricultural and Food Chemistry
IS - 15
ER -