TY - JOUR
T1 - Higher intake of fish and fat is associated with lower plasma s-adenosylhomocysteine
T2 - a cross-sectional study
AU - Lind, Mads Vendelbo
AU - Lauritzen, Lotte
AU - Pedersen, Oluf Borbye
AU - Vestergaard, Henrik
AU - Stark, Ken D
AU - Hansen, Torben
AU - Ross, Alastair B.
AU - Kristensen, Mette Bredal
N1 - CURIS 2017 NEXS 312
PY - 2017/10
Y1 - 2017/10
N2 - Several B-vitamins act as co-factors in one-carbon metabolism, a pathway that plays a central role in several chronic diseases. However, there is a lack of knowledge of how diet affects markers in one-carbon metabolism. The aim of this study was to explore dietary patterns and components associated with one-carbon metabolites. We hypothesized that intake of whole-grains and fish would be associated with lower Hcy, and higher SAM:SAH ratio due to their nutrient content. We assessed dietary information using a four-day dietary record in 118 men and women with features of the metabolic syndrome. In addition we assessed whole-blood fatty acid composition and plasma alkylresorcinols. Plasma s-adenosylmethionine (SAM), s-adenosylhomocysteine (SAH), homocysteine (Hcy) and vitamin B12 was included as one-carbon metabolism markers. We used principal component analysis (PCA) to explore dietary patterns and multiple linear regression models to examine associations between dietary factors and one-carbon metabolites. PCA separated subjects based on prudent and unhealthy dietary patterns, but the dietary pattern score was not related to the one-carbon metabolites. Whole grain intake was found to be inversely associated to plasma Hcy (-4.7% (-9.3; 0.0), P=.05) and total grain intake tended to be positively associated with SAM and SAH (2.4% (-0.5; 5.5), P=.08; 5.8% (-0.2; 12.1), P=.06, respectively, per SD increase in cereal intake). Fish intake was inversely associated with plasma Hcy and SAH concentrations (-5.4% (-9.7; -0.8), P=.02 and -7.0% (-12.1; -1.5), P=.01, respectively) and positively associated with the SAM:SAH ratio (6.2% (1.6; 11.0), P=.008). In conclusion, intake and fish and whole-grain appear to be associated with a beneficial one-carbon metabolism profile. This indicates that dietary components could play a role in regulation of one-carbon metabolism with a potential impact on disease prevention.
AB - Several B-vitamins act as co-factors in one-carbon metabolism, a pathway that plays a central role in several chronic diseases. However, there is a lack of knowledge of how diet affects markers in one-carbon metabolism. The aim of this study was to explore dietary patterns and components associated with one-carbon metabolites. We hypothesized that intake of whole-grains and fish would be associated with lower Hcy, and higher SAM:SAH ratio due to their nutrient content. We assessed dietary information using a four-day dietary record in 118 men and women with features of the metabolic syndrome. In addition we assessed whole-blood fatty acid composition and plasma alkylresorcinols. Plasma s-adenosylmethionine (SAM), s-adenosylhomocysteine (SAH), homocysteine (Hcy) and vitamin B12 was included as one-carbon metabolism markers. We used principal component analysis (PCA) to explore dietary patterns and multiple linear regression models to examine associations between dietary factors and one-carbon metabolites. PCA separated subjects based on prudent and unhealthy dietary patterns, but the dietary pattern score was not related to the one-carbon metabolites. Whole grain intake was found to be inversely associated to plasma Hcy (-4.7% (-9.3; 0.0), P=.05) and total grain intake tended to be positively associated with SAM and SAH (2.4% (-0.5; 5.5), P=.08; 5.8% (-0.2; 12.1), P=.06, respectively, per SD increase in cereal intake). Fish intake was inversely associated with plasma Hcy and SAH concentrations (-5.4% (-9.7; -0.8), P=.02 and -7.0% (-12.1; -1.5), P=.01, respectively) and positively associated with the SAM:SAH ratio (6.2% (1.6; 11.0), P=.008). In conclusion, intake and fish and whole-grain appear to be associated with a beneficial one-carbon metabolism profile. This indicates that dietary components could play a role in regulation of one-carbon metabolism with a potential impact on disease prevention.
KW - Dietary patterns
KW - Homocysteine
KW - Long-chain polyunsaturated fatty acids
KW - Whole grain
KW - Methyl donor metabolism
U2 - 10.1016/j.nutres.2017.09.008
DO - 10.1016/j.nutres.2017.09.008
M3 - Journal article
C2 - 29129471
SN - 0271-5317
VL - 46
SP - 78
EP - 87
JO - Nutrition Research
JF - Nutrition Research
ER -