High-resolution α-glucosidase inhibition profiling combined with HPLC-HRMS-SPE-NMR for identification of anti-diabetic compounds in Eremanthus crotonoides (Asteraceae)

Eder Lana e Silva, Jonathas Felipe Revoredo Lobo, Joachim Møllesøe Vinther, Ricardo Moreira Borges, Dan Stærk

    20 Citations (Scopus)

    Abstract

    α-Glucosidase inhibitors decrease the cleavage- and absorption rate of monosaccharides from complex dietary carbohydrates, and represent therefore an important class of drugs for management of type 2 diabetes. In this study, a defatted ethyl acetate extract of Eremanthus crotonoides leaves with an inhibitory concentration (IC50) of 34.5 μg/mL towards α-glucosidase was investigated by high-resolution α-glucosidase inhibition profiling combined with HPLC-HRMS-SPE-NMR. This led to identification of six α-glucosidase inhibitors, namely quercetin (16), trans-tiliroside (17), luteolin (19), quercetin-3-methyl ether (20), 3,5-di-O-caffeoylquinic acid n-butyl ester (26) and 4,5-di-O-caffeoylquinic acid n-butyl ester (29). In addition, nineteen other metabolites were identified. The most active compounds were the two regioisomeric di-O-caffeoylquinic acid derivatives 26 and 29, with IC50 values of 5.93 and 5.20 μM, respectively. This is the first report of the α-glucosidase inhibitory activity of compounds 20, 26, and 29, and the findings support the important role of Eremanthus species as novel sources of new drugs and/or herbal remedies for treatment of type 2 diabetes.
    Original languageEnglish
    Article number782
    JournalMolecules
    Volume21
    Issue number6
    Number of pages19
    ISSN1420-3049
    DOIs
    Publication statusPublished - 1 Jun 2016

    Fingerprint

    Dive into the research topics of 'High-resolution α-glucosidase inhibition profiling combined with HPLC-HRMS-SPE-NMR for identification of anti-diabetic compounds in Eremanthus crotonoides (Asteraceae)'. Together they form a unique fingerprint.

    Cite this