High-fat feeding inhibits exercise-induced increase in mitochondrial respiratory flux in skeletal muscle

Mette Skovbro, Robert Christopher Boushel, Christina Neigaard Hansen, Jørn Wulff Helge, Flemming Dela

13 Citations (Scopus)

Abstract

Twenty one healthy untrained male subjects were randomized to follow a high-fat diet (HFD; 55-60E% fat, 25-30E% carbohydrate, and 15E% protein) or a normal diet (ND; 25-35E% fat, 55-60E% carbohydrate, and 10-15E% protein) for 21/2 wk. Diets were isocaloric and tailored individually to match energy expenditure. At 21/2 wk of diet, one 60-min bout of bicycle exercise (70% of maximal oxygen uptake) was performed. Muscle biopsies were obtained before and after the diet, immediately after exercise, and after 3-h recovery. Insulin sensitivity (hyperinsulinemic-euglycemic clamp) and intramyocellular triacylglycerol content did not change with the intervention in either group. Indexes of mitochondrial density were similar across the groups and intervention. Mitochondrial respiratory rates, measured in permeabilized muscle fibers, showed a 31 ± 11 and 26 ± 9% exercise-induced increase (P < 0.05) in state 3 (glycolytic substrates) and uncoupled respiration, respectively. However, in HFD this increase was abolished. At recovery, no change from resting respiration was seen in either group. With a lipid substrate (octanoylcarnitine with or without ADP), similar exercise-induced increases β1-62%) were seen in HFD and ND, but only in HFD was an elevated (P < 0.05) respiratory rate seen at recovery. With HFD complex I and IV protein expression decreased (P < 0.05 and P = 0.06, respectively). A fat-rich diet induces marked changes in the mitochondrial electron transport system protein content and in exercise-induced mitochondrial substrate oxidation rates, with the effects being present hours after the exercise. The effect of HFD is present even without effects on insulin sensitivity and intramyocellular lipid accumulation. An isocaloric high-fat diet does not cause insulin resistance.

Original languageEnglish
JournalJournal of Applied Physiology
Volume110
Issue number6
Pages (from-to)1607-14
Number of pages8
ISSN1522-1601
DOIs
Publication statusPublished - Jun 2011

Fingerprint

Dive into the research topics of 'High-fat feeding inhibits exercise-induced increase in mitochondrial respiratory flux in skeletal muscle'. Together they form a unique fingerprint.

Cite this