High-efficiency genome editing via 2A-coupled co-expression of fluorescent proteins and zinc finger nucleases or CRISPR/Cas9 nickase pairs

Katarzyna Duda, Lindsey A Lonowski, Michael Kofoed-Nielsen, Adriana Ibarra, Catherine M Delay, Qiaohua Kang, Zhang Yang, Shondra M Pruett-Miller, Eric P Bennett, Hans H Wandall, Gregory D Davis, Steen H Hansen, Morten Frödin

56 Citations (Scopus)

Abstract

Targeted endonucleases including zinc finger nucleases (ZFNs) and clustered regularly interspaced short palindromic repeats (CRISPRs)/Cas9 are increasingly being used for genome editing in higher species. We therefore devised a broadly applicable and versatile method for increasing editing efficiencies by these tools. Briefly, 2A peptide-coupled co-expression of fluorescent protein and nuclease was combined with fluorescence-activated cell sorting (FACS) to allow for efficient isolation of cell populations with increasingly higher nuclease expression levels, which translated into increasingly higher genome editing rates. For ZFNs, this approach, combined with delivery of donors as single-stranded oligodeoxynucleotides and nucleases as messenger ribonucleic acid, enabled high knockin efficiencies in demanding applications, including biallelic codon conversion frequencies reaching 30-70% at high transfection efficiencies and ∼2% at low transfection efficiencies, simultaneous homozygous knockin mutation of two genes with ∼1.5% efficiency as well as generation of cell pools with almost complete codon conversion via three consecutive targeting and FACS events. Observed off-target effects were minimal, and when occurring, our data suggest that they may be counteracted by selecting intermediate nuclease levels where off-target mutagenesis is low, but on-target mutagenesis remains relatively high. The method was also applicable to the CRISPR/Cas9 system, including CRISPR/Cas9 mutant nickase pairs, which exhibit low off-target mutagenesis compared to wild-type Cas9.
Original languageEnglish
Article numbere84
JournalNucleic Acids Research
Volume42
Issue number10
Pages (from-to)1-16
Number of pages16
ISSN0305-1048
DOIs
Publication statusPublished - 2 Jun 2014

Fingerprint

Dive into the research topics of 'High-efficiency genome editing via 2A-coupled co-expression of fluorescent proteins and zinc finger nucleases or CRISPR/Cas9 nickase pairs'. Together they form a unique fingerprint.

Cite this