TY - JOUR
T1 - Herd diagnosis of low pathogen diarrhoea in growing pigs
T2 - a pilot study
AU - Pedersen, Ken Steen
AU - Johansen, Markku
AU - Angen, Øystein
AU - Jorsal, Sven Erik Lind
AU - Nielsen, Jens Peter
AU - Jensen, Tim Kåre
AU - Guedes, Roberto
AU - Ståhl, Marie
AU - Bækbo, Poul
PY - 2014/1/1
Y1 - 2014/1/1
N2 - Background: The major indication for antibiotic use in Danish pigs is treatment of intestinal diseases post weaning. Clinical decisions on antibiotic batch medication are often based on inspection of diarrhoeic pools on the pen floor. In some of these treated diarrhoea outbreaks, intestinal pathogens can only be demonstrated in a small number of pigs within the treated group (low pathogen diarrhoea). Termination of antibiotic batch medication in herds suffering from such diarrhoea could potentially reduce the consumption of antibiotics in the pig industry. The objective of the present pilot study was to suggest criteria for herd diagnosis of low pathogen diarrhoea in growing pigs. Data previously collected from 20 Danish herds were used to create a case series of clinical diarrhoea outbreaks normally subjected to antibiotic treatment. In the present study, these diarrhoea outbreaks were classified as low pathogen (<15% of the pigs having bacterial intestinal disease) (n =5 outbreaks) or high pathogen (≥15% of the pigs having bacterial intestinal disease) (n =15 outbreaks). Based on the case series, different diagnostic procedures were explored, and criteria for herd diagnosis of low pathogen diarrhoea were suggested. The effect of sampling variation was explored by simulation. Results: The diagnostic procedure with the highest combined herd-level sensitivity and specificity was qPCR testing of a pooled sample containing 20 randomly selected faecal samples. The criteria for a positive test result (high pathogen diarrhoea outbreak) were an average of 1.5 diarrhoeic faecal pools on the floor of each pen in the room under investigation and a pathogenic bacterial load ≥35,000 per gram in the faecal pool tested by qPCR. The bacterial load was the sum of Lawsonia intracellularis, Brachyspira pilosicoli and Escherichia coli F4 and F18 bacteria per gram faeces. The herd-diagnostic performance was (herd-level) diagnostic sensitivity =0.99, diagnostic specificity =0.80, positive predictive value =0.94 and negative predictive value =0.96. Conclusions: The pilot study suggests criteria for herd diagnosis of low pathogen diarrhoea in growing pigs. The suggested criteria should now be evaluated, and the effect of terminating antibiotic batch medication in herds identified as suffering from low pathogen diarrhoea should be explored.
AB - Background: The major indication for antibiotic use in Danish pigs is treatment of intestinal diseases post weaning. Clinical decisions on antibiotic batch medication are often based on inspection of diarrhoeic pools on the pen floor. In some of these treated diarrhoea outbreaks, intestinal pathogens can only be demonstrated in a small number of pigs within the treated group (low pathogen diarrhoea). Termination of antibiotic batch medication in herds suffering from such diarrhoea could potentially reduce the consumption of antibiotics in the pig industry. The objective of the present pilot study was to suggest criteria for herd diagnosis of low pathogen diarrhoea in growing pigs. Data previously collected from 20 Danish herds were used to create a case series of clinical diarrhoea outbreaks normally subjected to antibiotic treatment. In the present study, these diarrhoea outbreaks were classified as low pathogen (<15% of the pigs having bacterial intestinal disease) (n =5 outbreaks) or high pathogen (≥15% of the pigs having bacterial intestinal disease) (n =15 outbreaks). Based on the case series, different diagnostic procedures were explored, and criteria for herd diagnosis of low pathogen diarrhoea were suggested. The effect of sampling variation was explored by simulation. Results: The diagnostic procedure with the highest combined herd-level sensitivity and specificity was qPCR testing of a pooled sample containing 20 randomly selected faecal samples. The criteria for a positive test result (high pathogen diarrhoea outbreak) were an average of 1.5 diarrhoeic faecal pools on the floor of each pen in the room under investigation and a pathogenic bacterial load ≥35,000 per gram in the faecal pool tested by qPCR. The bacterial load was the sum of Lawsonia intracellularis, Brachyspira pilosicoli and Escherichia coli F4 and F18 bacteria per gram faeces. The herd-diagnostic performance was (herd-level) diagnostic sensitivity =0.99, diagnostic specificity =0.80, positive predictive value =0.94 and negative predictive value =0.96. Conclusions: The pilot study suggests criteria for herd diagnosis of low pathogen diarrhoea in growing pigs. The suggested criteria should now be evaluated, and the effect of terminating antibiotic batch medication in herds identified as suffering from low pathogen diarrhoea should be explored.
U2 - 10.1186/2046-0481-67-24
DO - 10.1186/2046-0481-67-24
M3 - Journal article
C2 - 25392732
SN - 2046-0481
VL - 67
JO - Irish Veterinary Journal (Online)
JF - Irish Veterinary Journal (Online)
M1 - 24
ER -