Graphical models for zero-inflated single cell gene expression

Andrew McDavid, Raphael Gottardo, Noah Simon, Mathias Drton

6 Citations (Scopus)
14 Downloads (Pure)

Abstract

Bulk gene expression experiments relied on aggregations of thousands of cells to measure the average expression in an organism. Advances in mi-crofluidic and droplet sequencing now permit expression profiling in single cells. This study of cell-to-cell variation reveals that individual cells lack detectable expression of transcripts that appear abundant on a population level, giving rise to zero-inflated expression patterns. To infer gene coreg-ulatory networks from such data, we propose a multivariate Hurdle model. It is comprised of a mixture of singular Gaussian distributions. We employ neighborhood selection with the pseudo-likelihood and a group lasso penalty to select and fit undirected graphical models that capture conditional inde-pendences between genes. The proposed method is more sensitive than existing approaches in simulations, even under departures from our Hurdle model. The method is applied to data for T follicular helper cells, and a high-dimensional profile of mouse dendritic cells. It infers network structure not revealed by other methods, or in bulk data sets. A R implementation is available at https://github.com/amcdavid/HurdleNormal.

Original languageEnglish
JournalAnnals of Applied Statistics
Volume13
Issue number2
Pages (from-to)848-873
Number of pages26
ISSN1932-6157
DOIs
Publication statusPublished - 2019

Keywords

  • Gene network
  • Graphical model
  • Group lasso
  • Single cell gene expression

Fingerprint

Dive into the research topics of 'Graphical models for zero-inflated single cell gene expression'. Together they form a unique fingerprint.

Cite this