Glutamate dehydrogenase is essential to sustain neuronal oxidative energy metabolism during stimulation

Michaela C Hohnholt, Vibe H Andersen, Jens V Andersen, Sofie K Christensen, Melis Karaca, Pierre Maechler, Helle S Waagepetersen

11 Citations (Scopus)

Abstract

The enzyme glutamate dehydrogenase (GDH; Glud1) catalyzes the (reversible) oxidative deamination of glutamate to α-ketoglutarate accompanied by a reduction of NAD+ to NADH. GDH connects amino acid, carbohydrate, neurotransmitter and oxidative energy metabolism. Glutamine is a neurotransmitter precursor used by neurons to sustain the pool of glutamate, but glutamine is also vividly oxidized for support of energy metabolism. This study investigates the role of GDH in neuronal metabolism by employing the Cns- Glud1-/- mouse, lacking GDH in the brain (GDH KO) and metabolic mapping using 13C-labelled glutamine and glucose. We observed a severely reduced oxidative glutamine metabolism during glucose deprivation in synaptosomes and cultured neurons not expressing GDH. In contrast, in the presence of glucose, glutamine metabolism was not affected by the lack of GDH expression. Respiration fuelled by glutamate was significantly lower in brain mitochondria from GDH KO mice and synaptosomes were not able to increase their respiration upon an elevated energy demand. The role of GDH for metabolism of glutamine and the respiratory capacity underscore the importance of GDH for neurons particularly during an elevated energy demand, and it may reflect the large allosteric activation of GDH by ADP.

Original languageEnglish
JournalJournal of Cerebral Blood Flow and Metabolism
Volume38
Issue number10
Pages (from-to)1754–1768
ISSN0271-678X
DOIs
Publication statusPublished - 1 Oct 2018

Keywords

  • Journal Article

Fingerprint

Dive into the research topics of 'Glutamate dehydrogenase is essential to sustain neuronal oxidative energy metabolism during stimulation'. Together they form a unique fingerprint.

Cite this