Global 3D imaging of Yersinia ruckeri bacterin uptake in rainbow trout fry

Maki Otani, Kasper Rømer Villumsen, Erling Olaf Koppang, Martin Kristian Raida

    14 Citations (Scopus)
    663 Downloads (Pure)

    Abstract

    Yersinia ruckeri is the causative agent of enteric redmouth disease (ERM) in rainbow trout, and the first commercially available fish vaccine was an immersion vaccine against ERM consisting of Y. ruckeri bacterin. The ERM immersion vaccine has been successfully used in aquaculture farming of salmonids for more than 35 years. The gills and the gastrointestinal (GI) tract are believed to be the portals of antigen uptake during waterborne vaccination against ERM; however, the actual sites of bacterin uptake are only partly understood. In order to obtain insight into bacterin uptake during waterborne vaccination, optical projection tomography (OPT) together with immunohistochemistry (IHC) was applied to visualize bacterin uptake and processing in whole rainbow trout fry. Visualization by OPT revealed that the bacterin was initially taken up via gill lamellae from within 30 seconds post vaccination. Later, bacterin uptake was detected on other mucosal surfaces such as skin and olfactory bulb from 5 to 30 minutes post vaccination. The GI tract was found to be filled with a complex of bacterin and mucus at 3 hours post vaccination and the bacterin remained in the GI tract for at least 24 hours. Large amounts of bacterin were present in the blood, and an accumulation of bacterin was found in filtering lymphoid organs such as spleen and trunk kidney where the bacterin accumulates 24 hours post vaccination as demonstrated by OPT and IHC. These results suggest that bacterin is taken up via the gill epithelium in the earliest phases of the bath exposure and from the GI tract in the later phase. The bacterin then enters the blood circulatory system, after which it is filtered by spleen and trunk kidney, before finally accumulating in lymphoid organs where adaptive immunity against ERM is likely to develop.

    Original languageEnglish
    Article numbere0117263
    JournalPLOS ONE
    Volume10
    Issue number2
    Number of pages19
    ISSN1932-6203
    DOIs
    Publication statusPublished - 6 Feb 2015

    Fingerprint

    Dive into the research topics of 'Global 3D imaging of Yersinia ruckeri bacterin uptake in rainbow trout fry'. Together they form a unique fingerprint.

    Cite this