Genetic data from nearly 63,000 women of European descent predicts DNA methylation biomarkers and epithelial ovarian cancer risk

Yaohua Yang, Lang Wu, Xiang Shu, Yingchang Lu, Xiao Ou Shu, Qiuyin Cai, Alicia Beeghly-Fadiel, Bingshan Li, Fei Ye, Andrew Berchuck, Hoda Anton-Culver, Susana Banerjee, Javier Benitez, Line Bjørge, James D. Brenton, Ralf Butzow, Ian G. Campbell, Jenny Chang-Claude, Kexin Chen, Linda S. CookDaniel W. Cramer, Anna De Fazio, Joe Dennis, Jennifer A. Doherty, Diana M. Eccles, Digna Velez Edwards, Peter A. Fasching, Reneé T. Fortner, Simon A. Gayther, Graham G. Giles, Rosalind M. Glasspool, Ellen L. Goode, Marc T. Goodman, Jacek Gronwald, Holly R. Harris, Florian Heitz, Michelle A. Hildebrandt, Estrid Høgdall, Claus K. Høgdall, David G. Huntsman, Siddhartha P. Kar, Beth Y. Karlan, Linda E. Kelemen, Lambertus A. Kiemeney, Susanne K. Kjaer, Anita Koushik, Diether Lambrechts, Nhu D. Le, Douglas A. Levine, Leon F. Massuger, Keitaro Matsuo, Taymaa May, Iain A. McNeish, Usha Menon, Francesmary Modugno, Alvaro N. Monteiro, Patricia G. Moorman, Kirsten B. Moysich, Roberta B. Ness, Heli Nevanlinna, Håkan Olsson, N. Charlotte Onland-Moret, Sue K. Park, James Paul, Celeste L. Pearce, Tanja Pejovic, Catherine M. Phelan, Malcolm C. Pike, Susan J. Ramus, Elio Riboli, Cristina Rodriguez-Antona, Isabelle Romieu, Dale P. Sandler, Joellen M. Schildkraut, Veronica W. Setiawan, Kang Shan, Nadeem Siddiqui, Weiva Sieh, Meir J. Stampfer, Rebecca Sutphen, Anthony J. Swerdlow, Lukasz M. Szafron, Soo Hwang Teo, Shelley S. Tworoger, Jonathan P. Tyrer, Penelope M. Webb, Nicolas Wentzensen, Emily White, Walter C. Willett, Alicja Wolk, Yin Ling Woo, Anna H. Wu, Li Yan, Drakoulis Yannoukakos, Georgia Chenevix-Trench, Thomas A. Sellers, Paul D.P. Pharoah, Wei Zheng, Jirong Long*

*Corresponding author for this work
13 Citations (Scopus)

Fingerprint

Dive into the research topics of 'Genetic data from nearly 63,000 women of European descent predicts DNA methylation biomarkers and epithelial ovarian cancer risk'. Together they form a unique fingerprint.

Medicine & Life Sciences