TY - JOUR
T1 - Freeze-out radii extracted from three-pion cumulants in pp, p–Pb and Pb–Pb collisions at the LHC
AU - Abelev, B.
AU - Adam, J.
AU - Adamová, D.
AU - Aggarwal, M.M.
AU - Bearden, Ian
AU - Bøggild, Hans
AU - Christensen, Christian Holm
AU - Gulbrandsen, Kristjan Herlache
AU - Gaardhøje, Jens Jørgen
AU - Nielsen, Børge Svane
AU - Hansen, Alexander Colliander
AU - Bilandzic, Ante
AU - Chojnacki, Marek
AU - Zaccolo, Valentina
PY - 2014/12/2
Y1 - 2014/12/2
N2 - In high-energy collisions, the spatio-temporal size of the particle production region can be measured using the Bose-Einstein correlations of identical bosons at low relative momentum. The source radii are typically extracted using two-pion correlations, and characterize the system at the last stage of interaction, called kinetic freeze-out. In low-multiplicity collisions, unlike in high-multiplicity collisions, two-pion correlations are substantially altered by background correlations, e.g. mini-jets. Such correlations can be suppressed using three-pion cumulant correlations. We present the first measurements of the size of the system at freeze-out extracted from three-pion cumulant correlations in pp, p-Pb and Pb-Pb collisions at the LHC with ALICE. At similar multiplicity, the invariant radii extracted in p-Pb collisions are found to be 5-15% larger than those in pp, while those in Pb-Pb are 35-55% larger than those in p-Pb. Our measurements disfavor models which incorporate substantially stronger collective expansion in p-Pb as compared to pp collisions at similar multiplicity.
AB - In high-energy collisions, the spatio-temporal size of the particle production region can be measured using the Bose-Einstein correlations of identical bosons at low relative momentum. The source radii are typically extracted using two-pion correlations, and characterize the system at the last stage of interaction, called kinetic freeze-out. In low-multiplicity collisions, unlike in high-multiplicity collisions, two-pion correlations are substantially altered by background correlations, e.g. mini-jets. Such correlations can be suppressed using three-pion cumulant correlations. We present the first measurements of the size of the system at freeze-out extracted from three-pion cumulant correlations in pp, p-Pb and Pb-Pb collisions at the LHC with ALICE. At similar multiplicity, the invariant radii extracted in p-Pb collisions are found to be 5-15% larger than those in pp, while those in Pb-Pb are 35-55% larger than those in p-Pb. Our measurements disfavor models which incorporate substantially stronger collective expansion in p-Pb as compared to pp collisions at similar multiplicity.
U2 - 10.1016/j.physletb.2014.10.034
DO - 10.1016/j.physletb.2014.10.034
M3 - Journal article
SN - 0370-2693
VL - 739
SP - 139
EP - 151
JO - Physics Letters B: Particle Physics, Nuclear Physics and Cosmology
JF - Physics Letters B: Particle Physics, Nuclear Physics and Cosmology
ER -