Abstract
Co-encapsidation of retroviral RNAs into virus particles allows for the generation of recombinant proviruses through events of template switching during reverse transcription. By use of a forced recombination system based on recombinational rescue of replication- defective primer binding site-impaired Akv-MLV-derived vectors, we here examine putative genetic interactions between vector RNAs and copackaged endogenous retroviral RNAs of the murine leukaemia virus (MLV) and VL30 retroelement families. We show (i) that MLV recombination is not blocked by nonhomology within the 5' untranslated region harbouring the supposed RNA dimer-forming cis -elements and (ii) that copackaged retroviral RNAs can recombine despite pronounced sequence dissimilarity at the cross-over site(s) and within parts of the genome involved in RNA dimerization, encapsidation and strand transferring during reverse transcription. We note that recombination-based rescue of primer binding site knock-out retroviral vectors may constitute a sensitive assay to register putative genetic interactions involving endogenous retroviral RNAs present in cells of various species.
Original language | English |
---|---|
Journal | Journal of General Virology |
Volume | 80 ( Pt 11) |
Pages (from-to) | 2957-67 |
Number of pages | 10 |
ISSN | 0022-1317 |
Publication status | Published - 1999 |