TY - CHAP
T1 - Flow-Induced Dispersion Analysis (FIDA) for Protein Quantification and Characterization
AU - Pedersen, Morten E
AU - Østergaard, Jesper
AU - Jensen, Henrik
PY - 2019
Y1 - 2019
N2 - Flow-Induced Dispersion Analysis (FIDA) enables characterization and quantification of proteins under native conditions. FIDA is based on measuring the change in size of a ligand as it selectively interacts with the target protein. The unbound ligand has a relatively small apparent hydrodynamic radius (size), which increase in the presence of the analyte due to binding to the analyte. The Kd of the interaction may be obtained in a titration experiment and the measurement of the apparent ligand size in an unknown sample forms the basis for determining the analyte concentration. The apparent molecular size is measured by Taylor dispersion analysis (TDA) in fused silica capillary capillaries. FIDA is a "ligand-binding" assay and has therefore certain features in common with Enzyme-Linked Immunosorbent Assay (ELISA), Surface Plasmon Resonance (SPR), and Biolayer Interferometry (BLI) based techniques. However, FIDA probes a single in-solution binding event and thus makes assay development straightforward, and the absolute size measurement enables built-in assay quality control. Further, as FIDA does not involve surface chemistries, complications related to nonspecific adsorption of analyte and assay components are minimized enabling direct measurement in, e.g., plasma and serum.
AB - Flow-Induced Dispersion Analysis (FIDA) enables characterization and quantification of proteins under native conditions. FIDA is based on measuring the change in size of a ligand as it selectively interacts with the target protein. The unbound ligand has a relatively small apparent hydrodynamic radius (size), which increase in the presence of the analyte due to binding to the analyte. The Kd of the interaction may be obtained in a titration experiment and the measurement of the apparent ligand size in an unknown sample forms the basis for determining the analyte concentration. The apparent molecular size is measured by Taylor dispersion analysis (TDA) in fused silica capillary capillaries. FIDA is a "ligand-binding" assay and has therefore certain features in common with Enzyme-Linked Immunosorbent Assay (ELISA), Surface Plasmon Resonance (SPR), and Biolayer Interferometry (BLI) based techniques. However, FIDA probes a single in-solution binding event and thus makes assay development straightforward, and the absolute size measurement enables built-in assay quality control. Further, as FIDA does not involve surface chemistries, complications related to nonspecific adsorption of analyte and assay components are minimized enabling direct measurement in, e.g., plasma and serum.
U2 - 10.1007/978-1-4939-9213-3_8
DO - 10.1007/978-1-4939-9213-3_8
M3 - Book chapter
C2 - 30847787
VL - 1972
T3 - Methods in molecular biology (Clifton, N.J.)
SP - 109
EP - 123
BT - Clinical Applications of Capillary Electrophoresis
PB - Springer
ER -