Abstract
We propose a quantum algorithm for simulating spin models based on the periodic modulation of transmon qubits. Using the Floquet theory, we derive an effective time-averaged Hamiltonian, which is of the general XYZ class, different from the isotropic XY Hamiltonian typically realized by the physical setup. As an example, we provide a simple recipe to construct a transverse Ising Hamiltonian in the Floquet basis. For a 1D system, we demonstrate numerically the dynamical simulation of the transverse Ising Hamiltonian and quantum annealing to its ground state. We benchmark the Floquet approach with a digital simulation procedure and demonstrate that it is advantageous for limited resources and finite anharmonicity of the transmons. The described protocol represents a hardware-efficient quantum software and can serve as a simple yet reliable path towards configurable quantum simulators with currently existing superconducting chips.
Original language | English |
---|---|
Article number | 064029 |
Journal | Physical Review Applied |
Volume | 9 |
Number of pages | 17 |
ISSN | 2331-7019 |
DOIs | |
Publication status | Published - 19 Jun 2018 |