FinPar: a parallel financial benchmark

Christian Andreetta, Vivien Begot, Jost Berthold, Martin Elsman, Fritz Henglein, Troels Henriksen, Maj-Britt Nordfang, Cosmin Eugen Oancea

9 Citations (Scopus)

Abstract

Commodity many-core hardware is now mainstream, but parallel programming models are still lagging behind in efficiently utilizing the application parallelism. There are (at least) two principal reasons for this. First, real-world programs often take the form of a deeply nested composition of parallel operators, but mapping the available parallelism to the hardware requires a set of transformations that are tedious to do by hand and beyond the capability of the common user. Second, the best optimization strategy, such as what to parallelize and what to efficiently sequentialize, is often sensitive to the input dataset and therefore requires multiple code versions that are optimized differently, which also raises maintainability problems.

This article presents three array-based applications from the financial domain that are suitable for gpgpu execution. Common benchmark-design practice has been to provide the same code for the sequential and parallel versions that are optimized for only one class of datasets. In comparison, we document (1) all available parallelism via nested map-reduce functional combinators, in a simple Haskell implementation that closely resembles the original code structure, (2) the invariants and code transformations that govern the main trade-offs of a data-sensitive optimization space, and (3) report target cpu and multiversion gpgpu code together with an evaluation that demonstrates optimization trade-offs and other difficulties. We believe that this work provides useful insight into the language constructs and compiler infrastructure capable of expressing and optimizing such applications, and we report in-progress work in this direction.
Original languageEnglish
Article number18
JournalACM Transactions on Architecture and Code Optimization (TACO)
Volume13
Issue number2
Pages (from-to)1
Number of pages27
ISSN1544-3566
DOIs
Publication statusPublished - Jun 2016

Fingerprint

Dive into the research topics of 'FinPar: a parallel financial benchmark'. Together they form a unique fingerprint.

Cite this