TY - JOUR
T1 - Fetal hyperglycemia changes human preadipocyte function in adult life
AU - Hansen, Ninna Schiøler
AU - Strasko, Klaudia Stanislawa
AU - Hjort, Line
AU - Kelstrup, Louise
AU - Houshmand-ØRegaard, Azadeh
AU - Schrölkamp, Maren
AU - Schultz, Heidi Schiøler
AU - Scheele, Camilla
AU - Pedersen, Bente Klarlund
AU - Ling, Charlotte
AU - Clausen, Tine Dalsgaard
AU - Damm, Peter
AU - Vaag, Allan
AU - Broholm, Christa
PY - 2017/4/1
Y1 - 2017/4/1
N2 - Context: Offspring of women with gestational diabetes (O-GDM) or type 1 diabetes mellitus (O-T1DM) have been exposed to hyperglycemia in utero and have an increased risk of developing metabolic disease in adulthood. Design: In total, we recruited 206 adult offspring comprising the two fetal hyperglycemic groups, O-GDM and O-T1DM, and, as a control group, offspring from the background population (O-BP). Subcutaneous fat biopsies were obtained and preadipocyte cell cultures were established from adult male O-GDM (n = 18, age 30.1 ± 2.5 years), O-T1DM (n = 18, age 31.6 ± 2.2 years), and O-BP (n = 16; age, 31.5 ± 2.7 years) and cultured in vitro. Main Outcome Measures: First, we studied in vivo adipocyte histology. Second, we studied in vitro preadipocyte leptin secretion, gene expression, and LEP DNA methylation. This was studied in combination with in vitro preadipocyte lipogenesis, lipolysis, and mitochondrial respiration. Results: We show that subcutaneous adipocytes from O-GDM are enlarged compared with O-BP adipocytes. Preadipocytes isolated from male O-GDM and O-T1DM and cultured in vitro displayed decreased LEP promoter methylation, increased leptin gene expression, and elevated leptin secretion throughout differentiation, compared with adipocytes established from male O-BP. In addition, the preadipocytes demonstrated functional defects including decreased maximal mitochondrial capacity with increased lipolysis and decreased ability to store fatty acids when challenged with 3 days of extra fatty acid supply. Conclusions: Taken together, these findings show that intrinsic epigenetic and functional changes exist in preadipocyte cultures from individuals exposed to fetal hyperglycemia who are at increased risk of developing metabolic disease.
AB - Context: Offspring of women with gestational diabetes (O-GDM) or type 1 diabetes mellitus (O-T1DM) have been exposed to hyperglycemia in utero and have an increased risk of developing metabolic disease in adulthood. Design: In total, we recruited 206 adult offspring comprising the two fetal hyperglycemic groups, O-GDM and O-T1DM, and, as a control group, offspring from the background population (O-BP). Subcutaneous fat biopsies were obtained and preadipocyte cell cultures were established from adult male O-GDM (n = 18, age 30.1 ± 2.5 years), O-T1DM (n = 18, age 31.6 ± 2.2 years), and O-BP (n = 16; age, 31.5 ± 2.7 years) and cultured in vitro. Main Outcome Measures: First, we studied in vivo adipocyte histology. Second, we studied in vitro preadipocyte leptin secretion, gene expression, and LEP DNA methylation. This was studied in combination with in vitro preadipocyte lipogenesis, lipolysis, and mitochondrial respiration. Results: We show that subcutaneous adipocytes from O-GDM are enlarged compared with O-BP adipocytes. Preadipocytes isolated from male O-GDM and O-T1DM and cultured in vitro displayed decreased LEP promoter methylation, increased leptin gene expression, and elevated leptin secretion throughout differentiation, compared with adipocytes established from male O-BP. In addition, the preadipocytes demonstrated functional defects including decreased maximal mitochondrial capacity with increased lipolysis and decreased ability to store fatty acids when challenged with 3 days of extra fatty acid supply. Conclusions: Taken together, these findings show that intrinsic epigenetic and functional changes exist in preadipocyte cultures from individuals exposed to fetal hyperglycemia who are at increased risk of developing metabolic disease.
U2 - 10.1210/jc.2016-3907
DO - 10.1210/jc.2016-3907
M3 - Journal article
C2 - 28204515
AN - SCOPUS:85017329683
SN - 0021-972X
VL - 102
SP - 1141
EP - 1150
JO - Journal of Clinical Endocrinology and Metabolism
JF - Journal of Clinical Endocrinology and Metabolism
IS - 4
ER -