Faster worst case deterministic dynamic connectivity

Casper Kejlberg-Rasmussen, Tsvi Kopelowitz, Seth Pettie, Mikkel Thorup

9 Citations (Scopus)
44 Downloads (Pure)

Abstract

We present a deterministic dynamic connectivity data structure for undirected graphs with worst case update time O(√n(log log n)2/log n) and constant query time. This improves on the previous best deterministic worst case algorithm of Frederickson (SIAM J. Comput., 1985) and Eppstein Galil, Italiano, and Nissenzweig (J. ACM, 1997), which had update time O(√n). All other algorithms for dynamic connectivity are either randomized (Monte Carlo) or have only amortized performance guarantees.

Original languageEnglish
Title of host publication24th Annual European Symposium on Algorithms (ESA 2016)
EditorsPiotr Sankowski, Christos Zaroliagis
Number of pages15
PublisherSchloss Dagstuhl - Leibniz-Zentrum für Informatik
Publication date1 Aug 2016
Pages53:1-53:15
Article number53
ISBN (Print)978-3-95977-015-6
DOIs
Publication statusPublished - 1 Aug 2016
EventEuropean symposium on algorithms - , Denmark
Duration: 22 Aug 201626 Aug 2016
Conference number: 24
http://conferences.au.dk/algo16/esa/

Conference

ConferenceEuropean symposium on algorithms
Number24
Country/TerritoryDenmark
Period22/08/201626/08/2016
Internet address
SeriesLeibniz International Proceedings in Informatics
Volume57
ISSN1868-8969

Fingerprint

Dive into the research topics of 'Faster worst case deterministic dynamic connectivity'. Together they form a unique fingerprint.

Cite this