Factors that influence telomeric oxidative base damage and repair by DNA glycosylase OGG1

David B Rhee, Avik Ghosh, Jian Lu, Vilhelm A Bohr, Yie Liu

82 Citations (Scopus)

Abstract

Telomeres are nucleoprotein complexes at the ends of linear chromosomes in eukaryotes, and are essential in preventing chromosome termini from being recognized as broken DNA ends. Telomere shortening has been linked to cellular senescence and human aging, with oxidative stress as a major contributing factor. 7,8-Dihydro-8-oxogaunine (8-oxodG) is one of the most abundant oxidative guanine lesions, and 8-oxoguanine DNA glycosylase (OGG1) is involved in its removal. In this study, we examined if telomeric DNA is particularly susceptible to oxidative base damage and if telomere-specific factors affect the incision of oxidized guanines by OGG1. We demonstrated that telomeric TTAGGG repeats were more prone to oxidative base damage and repaired less efficiently than non-telomeric TG repeats in vivo. We also showed that the 8-oxodG-incision activity of OGG1 is similar in telomeric and non-telomeric double-stranded substrates. In addition, telomere repeat binding factors TRF1 and TRF2 do not impair OGG1 incision activity. Yet, 8-oxodG in some telomere structures (e.g., fork-opening, 3'-overhang, and D-loop) were less effectively excised by OGG1, depending upon its position in these substrates. Collectively, our data indicate that the sequence context of telomere repeats and certain telomere configurations may contribute to telomere vulnerability to oxidative DNA damage processing.
Original languageEnglish
JournalDNA Repair
Volume10
Issue number1
Pages (from-to)34-44
Number of pages11
DOIs
Publication statusPublished - 2 Jan 2011

Fingerprint

Dive into the research topics of 'Factors that influence telomeric oxidative base damage and repair by DNA glycosylase OGG1'. Together they form a unique fingerprint.

Cite this