Exposure to phenols, parabens and UV filters: Associations with loss-of-function mutations in the filaggrin gene in men from the general population

Ulla N. Joensen*, Niels Jørgensen, Jacob P. Thyssen, Jørgen Holm Petersen, Pal B. Szecsi, Steen Stender, Anne Maria Andersson, Niels E. Skakkebæk, Hanne Frederiksen

*Corresponding author for this work
15 Citations (Scopus)

Abstract

Background Filaggrin is an epidermal protein that is important for normal skin barrier functions. Up to 10% of Europeans and Asians carry filaggrin gene (FLG) loss-of function mutations that appear to facilitate trans-epidermal penetration of certain chemicals. We previously showed that mutation carriers have higher internal exposure to certain phthalates, compared to controls, and hypothesized that they could have increased trans-epidermal penetration of other chemicals. Objectives We investigated exposure to non-persistent chemicals in young Danish men with and without FLG mutations. Methods Concentrations of eight simple phenols, six parabens and nine UV filters were analysed in urine from 65 FLG loss-of-function mutation carriers and 130 non-carriers (controls). Regression analyses, controlling for urinary dilution and confounders, were performed to estimate associations between FLG mutation status and chemical concentrations in urine. Results FLG mutation carriers had 80% (13–180%) higher urinary concentrations of methyl paraben (MeP) and 91% (13–219%) higher concentrations of n-propyl paraben (n-PrP) than controls. For 13 compounds, levels were higher in FLG mutation carriers, although differences were only statistically significant for MeP and n-PrP. Combined statistical analysis of concentrations of all the 18 compounds that were detectable in > 10% of subjects, suggested that concentrations were generally higher in mutation carriers (p = 0.03). Conclusion FLG loss-of-function mutation carriers have a higher internal exposure to some non-persistent chemicals, independently of atopic dermatitis. This may be due to increased trans-epidermal absorption and/or higher exposure, and mutation carriers may constitute a group susceptible to increased absorption of chemicals and topical medication.

Original languageEnglish
JournalEnvironment International
Volume105
Pages (from-to)105-111
ISSN0160-4120
DOIs
Publication statusPublished - 2017

Keywords

  • Dermal exposure
  • Endocrine disrupting chemicals
  • Filaggrin
  • Parabens
  • Phenols
  • UV filters

Fingerprint

Dive into the research topics of 'Exposure to phenols, parabens and UV filters: Associations with loss-of-function mutations in the filaggrin gene in men from the general population'. Together they form a unique fingerprint.

Cite this