Evaluation of uncertainties in regional climate change simulations

Z. Pan*, J. H. Christensen, R. W. Arritt, W. J. Gutowski, E. S. Takle, F. Otieno

*Corresponding author for this work
    97 Citations (Scopus)

    Abstract

    We have run two regional climate models (RCMs) forced by three sets of initial and boundary conditions to form a 2x3 suite of 10-year climate simulations for the continental United States at approximately 50 km horizontal resolution. The three sets of driving boundary conditions are a reanalysis, an atmosphere-ocean coupled general circulation model (GCM) current climate, and a future scenario of transient climate change. Common precipitation climatology features simulated by both models included realistic orographic precipitation, east-west transcontinental gradients, and reasonable annual cycles over different geographic locations. However, both models missed heavy cool-season precipitation in the lower Mississippi River basin, a seemingly common model defect. Various simulation biases (differences) produced by the RCMs are evaluated based on the 2x3 experiment set in addition to comparisons with the GCM simulation. The RCM performance bias is smallest, whereas the GCM-RCM downscaling bias (difference between GCM and RCM) is largest. The boundary forcing bias (difference between GCM current climate driven run and reanalysis-driven run) and intermodel bias are both largest in summer, possibly due to different subgrid scale processes in individual models. The ratio of climate change to biases, which we use as one measure of confidence in projected climate changes, is substantially larger than 1 in several seasons and regions while the ratios are always less than 1 in summer. The largest ratios among all regions are in California. Spatial correlation coefficients of precipitation were computed between simulation pairs in the 2x3 set. The climate change correlation is highest and the RCM performance correlation is lowest while boundary forcing and intermodel correlations are intermediate. The high spatial correlation for climate change suggests that even though future precipitation is projected to increase, its overall continental-scale spatial pattern is expected to remain relatively constant. The low RCM performance correlation shows a modeling challenge to reproduce observed spatial precipitation patterns.

    Original languageEnglish
    Article number2001JD900193
    JournalJournal of Geophysical Research Atmospheres
    Volume106
    Issue numberD16
    Pages (from-to)17735-17751
    Number of pages17
    ISSN2169-8953
    Publication statusPublished - 27 Aug 2001

    Fingerprint

    Dive into the research topics of 'Evaluation of uncertainties in regional climate change simulations'. Together they form a unique fingerprint.

    Cite this