Evaluation of multi-outcome longitudinal studies

Signe Marie Jensen, Christian Bressen Pipper, Christian Ritz

13 Citations (Scopus)

Abstract

Evaluation of intervention effects on multiple outcomes is a common scenario in clinical studies. In longitudinal studies, such evaluation is a challenge if one wishes to adequately capture simultaneous data behavior. In this situation, a common approach is to analyze each outcome separately. As a result, multiple statistical statements describing the intervention effect need to be reported and an adjustment for multiple testing is necessary. This is typically done by means of the Bonferroni procedure, which does not take into account the correlation between outcomes, thus resulting in overly conservative conclusions. We propose an alternative approach for multiplicity adjustment that incorporates dependence between outcomes, resulting in an appreciably less conservative evaluation. The ability of the proposed method to control the familywise error rate is evaluated in a simulation study, and the applicability of the method is demonstrated in two examples from the literature.

Original languageEnglish
JournalStatistics in Medicine
Pages (from-to)1993-2003
Number of pages11
ISSN0277-6715
DOIs
Publication statusPublished - 30 May 2015

Fingerprint

Dive into the research topics of 'Evaluation of multi-outcome longitudinal studies'. Together they form a unique fingerprint.

Cite this