Estimation of Synaptic Conductances in Presence of Nonlinear Effects Caused by Subthreshold Ionic Currents

Catalina Vich, Rune W. Berg, Antoni Guillamon, Susanne Ditlevsen

6 Citations (Scopus)
49 Downloads (Pure)

Abstract

Subthreshold fluctuations in neuronal membrane potential traces contain nonlinear components, and employing nonlinear models might improve the statistical inference. We propose a new strategy to estimate synaptic conductances, which has been tested using in silico data and applied to in vivo recordings. The model is constructed to capture the nonlinearities caused by subthreshold activated currents, and the estimation procedure can discern between excitatory and inhibitory conductances using only one membrane potential trace. More precisely, we perform second order approximations of biophysical models to capture the subthreshold nonlinearities, resulting in quadratic integrate-and-fire models, and apply approximate maximum likelihood estimation where we only suppose that conductances are stationary in a 50–100 ms time window. The results show an improvement compared to existent procedures for the models tested here.
Original languageEnglish
Article number69
JournalFrontiers in Computational Neuroscience
Volume11
Number of pages12
ISSN1662-5188
DOIs
Publication statusPublished - 25 Jul 2017

Fingerprint

Dive into the research topics of 'Estimation of Synaptic Conductances in Presence of Nonlinear Effects Caused by Subthreshold Ionic Currents'. Together they form a unique fingerprint.

Cite this