Escherichia coli phnN, encoding ribose 1,5-bisphosphokinase activity (phosphoribosyl diphosphate forming): dual role in phosphonate degradation and NAD biosynthesis pathways.

Bjarne Hove-Jensen, Tina J Rosenkrantz, Andreas Haldimann, Barry L Wanner

43 Citations (Scopus)

Abstract

An enzymatic pathway for synthesis of 5-phospho-D-ribosyl alpha-1-diphosphate (PRPP) without the participation of PRPP synthase was analyzed in Escherichia coli. This pathway was revealed by selection for suppression of the NAD requirement of strains with a deletion of the prs gene, the gene encoding PRPP synthase (B. Hove-Jensen, J. Bacteriol. 178:714-722, 1996). The new pathway requires three enzymes: phosphopentomutase, ribose 1-phosphokinase, and ribose 1,5-bisphosphokinase. The latter activity is encoded by phnN; the product of this gene is required for phosphonate degradation, but its enzymatic activity has not been determined previously. The reaction sequence is ribose 5-phosphate --> ribose 1-phosphate --> ribose 1,5-bisphosphate --> PRPP. Alternatively, the synthesis of ribose 1-phosphate in the first step, catalyzed by phosphopentomutase, can proceed via phosphorolysis of a nucleoside, as follows: guanosine + P(i) --> guanine + ribose 1-phosphate. The ribose 1,5-bisphosphokinase-catalyzed phosphorylation of ribose 1,5-bisphosphate is a novel reaction and represents the first assignment of a specific chemical reaction to a polypeptide required for cleavage of a carbon-phosphorus (C-P) bond by a C-P lyase. The phnN gene was manipulated in vitro to encode a variant of ribose 1,5-bisphosphokinase with a tail consisting of six histidine residues at the carboxy-terminal end. PhnN was purified almost to homogeneity and characterized. The enzyme accepted ATP but not GTP as a phosphoryl donor, and it used ribose 1,5-bisphosphate but not ribose, ribose 1-phosphate, or ribose 5-phosphate as a phosphoryl acceptor. The identity of the reaction product as PRPP was confirmed by coupling the ribose 1,5-bisphosphokinase activity to the activity of xanthine phosphoribosyltransferase in the presence of xanthine, which resulted in the formation of 5'-XMP, and by cochromatography of the reaction product with authentic PRPP.
Original languageEnglish
JournalJournal of Bacteriology
Volume185
Issue number9
Pages (from-to)2793-801
Number of pages8
ISSN0021-9193
DOIs
Publication statusPublished - 2003

Fingerprint

Dive into the research topics of 'Escherichia coli phnN, encoding ribose 1,5-bisphosphokinase activity (phosphoribosyl diphosphate forming): dual role in phosphonate degradation and NAD biosynthesis pathways.'. Together they form a unique fingerprint.

Cite this