Emulsified microemulsions and oil-containing liquid crystalline phases

Anan Yaghmur, Liliana de Campo, Laurent Sagalowicz, Martin E Leser, Otto Glatter

202 Citations (Scopus)

Abstract

Self-assembled nanostructures, such as inverted type mesophases of the cubic or hexagonal geometry or reverse microemulsion phases, can be dispersed using a polymeric stabilizer, such as the PEO-PPO-PEO triblock copolymer Pluronic F127. The particles, which are described in the present study, are based on monolinolein (MLO)-water mixtures. When adding tetradecane (TC) to the MLO-water-F127 system at constant temperature, the internal nanostructure of the kinetically stabilized particles transforms from a Pn3m (cubosomes) to a H2 (hexosomes) and to a water-in-oil (W/O, L2) microemulsion phase (emulsified microemulsion (EME)). To our knowledge, this is the first time that the formation of stable emulsified microemulsion (EME) systems has been described and proven to exist even at room temperature. The same structural transitions can also be induced by increasing temperature at constant tetradecane content. The internal nanostructure of the emulsified particles is probed using small-angle X-ray scattering (SAXS) and cryogenic transmission electron microscopy (cryo-TEM). At each investigated composition and temperature, the internal structure of the dispersions is observed to be identical to the corresponding structure of the nondispersed, fully hydrated bulk phase. This is clear evidence for the fact that the self-assembled inner particle nanostructure is preserved during the dispersion procedure. In addition, the internal structure of the particles is in thermodynamic equilibrium with the surrounding water phase. The internal structure of the dispersed, kinetically stabilized particles is a "real" and stable self-assembled nanostructure. To emphasize this fact, we denoted this new family of colloidal particles (cubosomes, hexosomes, and EMEs) as "ISASOMES" (internally self-assembled particles or "somes").
Original languageEnglish
JournalLangmuir : the ACS journal of surfaces and colloids
Volume21
Issue number2
Pages (from-to)569-77
Number of pages9
DOIs
Publication statusPublished - 18 Jan 2005
Externally publishedYes

Fingerprint

Dive into the research topics of 'Emulsified microemulsions and oil-containing liquid crystalline phases'. Together they form a unique fingerprint.

Cite this