Arabidopsis TWISTED DWARF1 functionally interacts with Auxin Exporter ABCB1 on the root plasma membrane

Bangjun Wang, Aurélien Bailly, Marta Zwiewka, Sina Henrichs, Elisa Azzarello, Stefano Mancuso, Masayoshi Maeshima, Jirí Friml, Alexander Schulz, Markus Geisler

57 Citations (Scopus)

Abstract

Plant architecture is influenced by the polar, cell-to-cell transport of auxin that is primarily provided and regulated by plasma membrane efflux catalysts of the PIN-FORMED and B family of ABC transporter (ABCB) classes. The latter were shown to require the functionality of the FK506 binding protein42 TWISTED DWARF1 (TWD1), although underlying mechanisms are unclear. By genetic manipulation of TWD1 expression, we show here that TWD1 affects shootward root auxin reflux and, thus, downstream developmental traits, such as epidermal twisting and gravitropism of the root. Using immunological assays, we demonstrate a predominant lateral, mainly outward-facing, plasma membrane location for TWD1 in the root epidermis characterized by the lateral marker ABC transporter G36/PLEIOTROPIC DRUG-RESISTANCE8/PENETRATION3. At these epidermal plasma membrane domains, TWD1 colocalizes with nonpolar ABCB1. In planta bioluminescence resonance energy transfer analysis was used to verify specific ABC transporter B1 (ABCB1)-TWD1 interaction. Our data support a model in which TWD1 promotes lateral ABCB-mediated auxin efflux via protein-protein interaction at the plasma membrane, minimizing reflux from the root apoplast into the cytoplasm.
Original languageEnglish
JournalPlant Cell
Volume25
Issue number1
Pages (from-to)202-214
Number of pages13
ISSN1040-4651
DOIs
Publication statusPublished - 2013

Keywords

  • binding cassette transporter
  • cells
  • efflux
  • immunophilin
  • lateral root
  • localization
  • p-glycoproteins
  • pin
  • plant development
  • resistance

Fingerprint

Dive into the research topics of 'Arabidopsis TWISTED DWARF1 functionally interacts with Auxin Exporter ABCB1 on the root plasma membrane'. Together they form a unique fingerprint.

Cite this