TY - JOUR
T1 - Electron efficiency measurements with the ATLAS detector using 2012 LHC proton-proton collision data
AU - Aaboud, M.
AU - Aad, G.
AU - Abbott, B.
AU - Adballah, J.
AU - Abdinov, O.
AU - Abeloos, B
AU - AbouZeid, O.S.
AU - Abraham, NL
AU - Abramowicz, H.
AU - Abreu, H.
AU - Abreu, R.
AU - Abulaiti, Y.
AU - Acharya, B.S.
AU - Adachi, H.
AU - Adamczyk, L.
AU - Adams, David L.
AU - Adelman, J P
AU - Adomeit, S.
AU - Adye, T.
AU - Affolder, A. A.
AU - Dam, Mogens
AU - Hansen, Jørn Dines
AU - Hansen, Jørgen Beck
AU - Xella, Stefania
AU - Hansen, Peter Henrik
AU - Petersen, Troels Christian
AU - Løvschall-Jensen, Ask Emil
AU - xtf324, xtf324
AU - Monk, James William
AU - Pedersen, Lars Egholm
AU - Wiglesworth, Graig
AU - Galster, Gorm Aske Gram Krohn
AU - Stark, Simon Holm
AU - Besjes, Geert-Jan
AU - Thiele, Fabian Alexander Jürgen
AU - de Almeida Dias, Flavia
AU - Bajic, Milena
PY - 2017/3/1
Y1 - 2017/3/1
N2 - This paper describes the algorithms for the reconstruction and identification of electrons in the central region of the ATLAS detector at the Large Hadron Collider (LHC). These algorithms were used for all ATLAS results with electrons in the final state that are based on the 2012 pp collision data produced by the LHC at s = 8 TeV. The efficiency of these algorithms, together with the charge misidentification rate, is measured in data and evaluated in simulated samples using electrons from Z→ ee, Z→ eeγ and J/ ψ→ ee decays. For these efficiency measurements, the full recorded data set, corresponding to an integrated luminosity of 20.3 fb- 1, is used. Based on a new reconstruction algorithm used in 2012, the electron reconstruction efficiency is 97% for electrons with ET= 15 GeV and 99% at ET= 50 GeV. Combining this with the efficiency of additional selection criteria to reject electrons from background processes or misidentified hadrons, the efficiency to reconstruct and identify electrons at the ATLAS experiment varies from 65 to 95%, depending on the transverse momentum of the electron and background rejection.
AB - This paper describes the algorithms for the reconstruction and identification of electrons in the central region of the ATLAS detector at the Large Hadron Collider (LHC). These algorithms were used for all ATLAS results with electrons in the final state that are based on the 2012 pp collision data produced by the LHC at s = 8 TeV. The efficiency of these algorithms, together with the charge misidentification rate, is measured in data and evaluated in simulated samples using electrons from Z→ ee, Z→ eeγ and J/ ψ→ ee decays. For these efficiency measurements, the full recorded data set, corresponding to an integrated luminosity of 20.3 fb- 1, is used. Based on a new reconstruction algorithm used in 2012, the electron reconstruction efficiency is 97% for electrons with ET= 15 GeV and 99% at ET= 50 GeV. Combining this with the efficiency of additional selection criteria to reject electrons from background processes or misidentified hadrons, the efficiency to reconstruct and identify electrons at the ATLAS experiment varies from 65 to 95%, depending on the transverse momentum of the electron and background rejection.
U2 - 10.1140/epjc/s10052-017-4756-2
DO - 10.1140/epjc/s10052-017-4756-2
M3 - Journal article
C2 - 28579919
SN - 1434-6044
VL - 77
JO - The European Physical Journal C: Particles and Fields
JF - The European Physical Journal C: Particles and Fields
IS - 3
M1 - 195
ER -