Electron acceleration by wave turbulence in a magnetized plasma

A. Rigby, F. Cruz, B. Albertazzi, R. Bamford, A. R. Bell, J. E. Cross, F. Fraschetti, P. Graham, Y. Hara, P. M. Kozlowski, Y. Kuramitsu, D. Q. Lamb, S. Lebedev, J. R. Marques, F. Miniati, T. Morita, M. Oliver, B. Reville, Y. Sakawa, S. SarkarC. Spindloe, R. Trines, P. Tzeferacos, L. O. Silva, R. Bingham, M. Koenig, G. Gregori

10 Citations (Scopus)

Abstract

Astrophysical shocks are commonly revealed by the non-thermal emission of energetic electrons accelerated in situ 1-3 . Strong shocks are expected to accelerate particles to very high energies 4-6 ; however, they require a source of particles with velocities fast enough to permit multiple shock crossings. While the resulting diffusive shock acceleration 4 process can account for observations, the kinetic physics regulating the continuous injection of non-thermal particles is not well understood. Indeed, this injection problem is particularly acute for electrons, which rely on high-frequency plasma fluctuations to raise them above the thermal pool 7,8 . Here we show, using laboratory laser-produced shock experiments, that, in the presence of a strong magnetic field, significant electron pre-heating is achieved. We demonstrate that the key mechanism in producing these energetic electrons is through the generation of lower-hybrid turbulence via shock-reflected ions. Our experimental results are analogous to many astrophysical systems, including the interaction of a comet with the solar wind 9 , a setting where electron acceleration via lower-hybrid waves is possible.

Original languageEnglish
JournalNature Physics
Volume14
Issue number5
Pages (from-to)475-479
ISSN1745-2473
DOIs
Publication statusPublished - 1 May 2018

Fingerprint

Dive into the research topics of 'Electron acceleration by wave turbulence in a magnetized plasma'. Together they form a unique fingerprint.

Cite this