Effects of lime and concrete waste on Vadose Zone carbon cycling

Eike Marie Thaysen, Søren Jessen, Dieke Postma, Rasmus Jakobsen, Diederik Jacques, Per Lennart Ambus, Eric Laloy, Iver Jakobsen

8 Citations (Scopus)
63 Downloads (Pure)

Abstract

In a series of mesocosm experiments, with barley (Hordeum vulgare L.) grown on podzolic soil material, we have investigated inorganic carbon cycling through the gaseous and liquid phases and how it is affected by different soil amendments. The mesocosm amendments comprised the addition of 0, 9.6, or 21.2 kg m-2of crushed concrete waste (CCW) or 1 kg lime m-2. The CCW and lime treatments increased the dissolved inorganic carbon (DIC) percolation flux by about 150 and 100%, respectively, compared to the controls. However, concurrent increases in the CO2 efflux to the atmosphere (ER) were more than one order of magnitude higher than increases in the DIC percolation flux. Analysis of soil solutions, coupled reactive-transport modeling studies, and a decrease in soil carbonate contents over the experiment altogether suggested that the increased ER from amended mesocosms was derived from the carbonate contained in the amendments, which, hence, mostly escaped to the atmosphere. Our results are important in the context of climate change due to the widespread application of lime to acidic soils. The CCW amendment had no adverse effects on plant growth and ground-water quality.

Original languageEnglish
JournalVadose Zone Journal
Volume13
Issue number11
Number of pages11
ISSN1539-1663
DOIs
Publication statusPublished - 1 Nov 2014

Fingerprint

Dive into the research topics of 'Effects of lime and concrete waste on Vadose Zone carbon cycling'. Together they form a unique fingerprint.

Cite this