Discovery of functional elements in 12 Drosophila genomes using evolutionary signatures.

Alexander Stark, Michael F Lin, Pouya Kheradpour, Jakob Skou Pedersen, Leopold Parts, Joseph W Carlson, Madeline A Crosby, Matthew D Rasmussen, Sushmita Roy, Ameya N Deoras, J Graham Ruby, Julius Brennecke, Harvard FlyBase curators, Berkeley Drosophila Genome Project, Emily Hodges, Angie S Hinrichs, Anat Caspi, Benedict Paten, Seung-Won Park, Mira V HanMorgan L Maeder, Benjamin J Polansky, Bryanne E Robson, Stein Aerts, Jacques van Helden, Bassem Hassan, Donald G Gilbert, Deborah A Eastman, Michael Rice, Michael Weir, Matthew W Hahn, Yongkyu Park, Colin N Dewey, Lior Pachter, W James Kent, David Haussler, Eric C Lai, David P Bartel, Gregory J Hannon, Thomas C Kaufman, Michael B Eisen, Andrew G Clark, Douglas Smith, Susan E Celniker, William M Gelbart, Manolis Kellis

446 Citations (Scopus)

Abstract

Sequencing of multiple related species followed by comparative genomics analysis constitutes a powerful approach for the systematic understanding of any genome. Here, we use the genomes of 12 Drosophila species for the de novo discovery of functional elements in the fly. Each type of functional element shows characteristic patterns of change, or 'evolutionary signatures', dictated by its precise selective constraints. Such signatures enable recognition of new protein-coding genes and exons, spurious and incorrect gene annotations, and numerous unusual gene structures, including abundant stop-codon readthrough. Similarly, we predict non-protein-coding RNA genes and structures, and new microRNA (miRNA) genes. We provide evidence of miRNA processing and functionality from both hairpin arms and both DNA strands. We identify several classes of pre- and post-transcriptional regulatory motifs, and predict individual motif instances with high confidence. We also study how discovery power scales with the divergence and number of species compared, and we provide general guidelines for comparative studies.
Original languageEnglish
JournalNature
Volume450
Issue number7167
Pages (from-to)219-32
Number of pages13
ISSN0028-0836
DOIs
Publication statusPublished - 2007

Fingerprint

Dive into the research topics of 'Discovery of functional elements in 12 Drosophila genomes using evolutionary signatures.'. Together they form a unique fingerprint.

Cite this