TY - JOUR
T1 - Differential effects of repeated low dose treatment with the cannabinoid agonist WIN 55,212-2 in experimental models of bone cancer pain and neuropathic pain
AU - Hald, Andreas
AU - Ding, Ming
AU - Egerod, Kristoffer Lihme
AU - Hansen, Rikke Rie
AU - Konradsen, Dorthe
AU - Jørgensen, Stine G.
AU - Atalay, Baris
AU - Nasser, Arafat
AU - Bjerrum, Ole Jannik
AU - Heegaard, Anne-Marie
PY - 2008
Y1 - 2008
N2 - Pain due to bone malignancies is one of the most difficult types of cancer pain to fully control and may further decrease the patients' quality of life. Animal models of chronic pain conditions resulting from peripheral inflammatory reactions or nerve injuries are responsive to treatment with cannabinoid agonists. However, the use of cannabinoid agonists in humans may be hampered by CNS related side effects and development of tolerance. In the present study, we investigated the effect of repeated low dose administration of the synthetic cannabinoid agonist WIN 55,212-2 on bone cancer pain and neuropathic pain in mice. In addition, we investigated the development of CNS related side effects and tolerance. We found that 0.5 mg/kg/day for 18 days reduced pain related behavior and expression of spinal glial fibrillary acidic protein in the bone cancer pain model but not in the neuropathic pain model. Furthermore, this treatment strategy was not found to induce measurable CNS related side effects or tolerance. Cancer cell viability assays and bone volume fraction assessed by micro computed tomography (microCT) demonstrated that these effects were not due to changes in cancer progression. The difference in WIN 55,212-2 efficacy between the bone cancer and neuropathic pain models may reflect the different pain generating mechanisms, which may be utilized in designing new therapeutic drugs.
AB - Pain due to bone malignancies is one of the most difficult types of cancer pain to fully control and may further decrease the patients' quality of life. Animal models of chronic pain conditions resulting from peripheral inflammatory reactions or nerve injuries are responsive to treatment with cannabinoid agonists. However, the use of cannabinoid agonists in humans may be hampered by CNS related side effects and development of tolerance. In the present study, we investigated the effect of repeated low dose administration of the synthetic cannabinoid agonist WIN 55,212-2 on bone cancer pain and neuropathic pain in mice. In addition, we investigated the development of CNS related side effects and tolerance. We found that 0.5 mg/kg/day for 18 days reduced pain related behavior and expression of spinal glial fibrillary acidic protein in the bone cancer pain model but not in the neuropathic pain model. Furthermore, this treatment strategy was not found to induce measurable CNS related side effects or tolerance. Cancer cell viability assays and bone volume fraction assessed by micro computed tomography (microCT) demonstrated that these effects were not due to changes in cancer progression. The difference in WIN 55,212-2 efficacy between the bone cancer and neuropathic pain models may reflect the different pain generating mechanisms, which may be utilized in designing new therapeutic drugs.
KW - Former Faculty of Pharmaceutical Sciences
U2 - 10.1016/j.pbb.2008.04.021
DO - 10.1016/j.pbb.2008.04.021
M3 - Journal article
C2 - 18611408
SN - 0091-3057
VL - 91
SP - 38
EP - 46
JO - Pharmacology Biochemistry and Behavior
JF - Pharmacology Biochemistry and Behavior
IS - 1
ER -