TY - JOUR
T1 - Determining neutrino oscillation parameters from atmospheric muon neutrino disappearance with three years of IceCube DeepCore data
AU - Aartsen, M.G.
AU - Ackermann, M.
AU - Adams, J.
AU - Aguilar, J.A.
AU - Ahlers, M.
AU - Ahrens, M.
AU - Altmann, D.
AU - Anderson, T.
AU - Arguelles, C.
AU - Arlen, T.C.
AU - Koskinen, David Jason
AU - Medici, Morten Ankersen
AU - Larson, Michael James
AU - Sarkar, Subir
AU - Wolf, Michael Marc
PY - 2015/4/7
Y1 - 2015/4/7
N2 - We present a measurement of neutrino oscillations via atmospheric muon neutrino disappearance with three years of data of the completed IceCube neutrino detector. DeepCore, a region of denser IceCube instrumentation, enables the detection and reconstruction of atmospheric muon neutrinos between 10 and 100 GeV, where a strong disappearance signal is expected. The IceCube detector volume surrounding DeepCore is used as a veto region to suppress the atmospheric muon background. Neutrino events are selected where the detected Cherenkov photons of the secondary particles minimally scatter, and the neutrino energy and arrival direction are reconstructed. Both variables are used to obtain the neutrino oscillation parameters from the data, with the best fit given by Δm322=2.72-0.20+0.19×10-3eV2 and sin2θ23=0.53-0.12+0.09 (normal mass ordering assumed). The results are compatible, and comparable in precision, to those of dedicated oscillation experiments.
AB - We present a measurement of neutrino oscillations via atmospheric muon neutrino disappearance with three years of data of the completed IceCube neutrino detector. DeepCore, a region of denser IceCube instrumentation, enables the detection and reconstruction of atmospheric muon neutrinos between 10 and 100 GeV, where a strong disappearance signal is expected. The IceCube detector volume surrounding DeepCore is used as a veto region to suppress the atmospheric muon background. Neutrino events are selected where the detected Cherenkov photons of the secondary particles minimally scatter, and the neutrino energy and arrival direction are reconstructed. Both variables are used to obtain the neutrino oscillation parameters from the data, with the best fit given by Δm322=2.72-0.20+0.19×10-3eV2 and sin2θ23=0.53-0.12+0.09 (normal mass ordering assumed). The results are compatible, and comparable in precision, to those of dedicated oscillation experiments.
U2 - 10.1103/physrevd.91.072004
DO - 10.1103/physrevd.91.072004
M3 - Journal article
SN - 2470-0010
VL - 91
JO - Physical Review D
JF - Physical Review D
IS - 7
M1 - 072004
ER -