TY - JOUR
T1 - Detection of Paracetamol as substrate of the gut microbiome
AU - Mukhtar, Imran
AU - Anwar, Haseeb
AU - Hussain, Ghulam
AU - Rasul, Azhar
AU - Naqvi, Syed Ali Raza
AU - Faisal, Muhammad Naeem
AU - Mustafa, Imtiaz
AU - Malik, Saima
AU - Shaukat, Arslan
AU - Mirza, Osman Asghar
AU - Sohail, Muhammad Umar
PY - 2019/3
Y1 - 2019/3
N2 - Gut microbiome, a new organ; represent targets to alter pharmacokinetics of orally administered drugs. Recently, in vitro trials endorsed the idea that orally administered drugs interact and some of their quantity may be taken up by normal microbiome during transit through gut. Such transport mechanisms in microbiome may compete for drug with the host itself. Currently, no data confirms specific transport system for paracetamol uptake by gut microbiome. In vivo trial was conducted in normal healthy male rats (n=36). Paracetamol was administered orally in a single dose of 75mg/kg to isolate microbial mass after transit of 2, 3, 4, 5 and 6 hours post drug administration. Paracetamol absorbance by microbiome was pursued by injecting extracted microbial lysate in RP-HPLC-UV with C18 column under isocratic conditions at 207nm using acetonitrile and water (25:75 v/v) pH 2.50 as mobile phase. Paracetamol absorbance (14.10±0.75μg/mg of microbial mass) and percent dose recovery (13.16±0.55%) seen at transit of 4 hours was significantly higher (P<0.05) compared to other groups. Study confirms the hypothesis of homology between membrane transporters of the gut microbiome and intestinal epithelium. Orally administered drugs can be absorbed by gut microbes competitively during transit in small intestine and it varies at various transit times.
AB - Gut microbiome, a new organ; represent targets to alter pharmacokinetics of orally administered drugs. Recently, in vitro trials endorsed the idea that orally administered drugs interact and some of their quantity may be taken up by normal microbiome during transit through gut. Such transport mechanisms in microbiome may compete for drug with the host itself. Currently, no data confirms specific transport system for paracetamol uptake by gut microbiome. In vivo trial was conducted in normal healthy male rats (n=36). Paracetamol was administered orally in a single dose of 75mg/kg to isolate microbial mass after transit of 2, 3, 4, 5 and 6 hours post drug administration. Paracetamol absorbance by microbiome was pursued by injecting extracted microbial lysate in RP-HPLC-UV with C18 column under isocratic conditions at 207nm using acetonitrile and water (25:75 v/v) pH 2.50 as mobile phase. Paracetamol absorbance (14.10±0.75μg/mg of microbial mass) and percent dose recovery (13.16±0.55%) seen at transit of 4 hours was significantly higher (P<0.05) compared to other groups. Study confirms the hypothesis of homology between membrane transporters of the gut microbiome and intestinal epithelium. Orally administered drugs can be absorbed by gut microbes competitively during transit in small intestine and it varies at various transit times.
M3 - Journal article
C2 - 31103967
SN - 1011-601X
VL - 32
SP - 751
EP - 757
JO - Pakistan Journal of Pharmaceutical Sciences
JF - Pakistan Journal of Pharmaceutical Sciences
IS - 2 (Supplementary)
ER -