Dark matter interpretations of ATLAS searches for the electroweak production of supersymmetric particles in root s=8 TeV proton-proton collisions

M. Aaboud, G. Aad, B. Abbott, J. Abdallah, O. Abdinov, B Abeloos, R. Aben, O.S. AbouZeid, NL Abraham, H. Abramowicz, Mogens Dam, Jørn Dines Hansen, Jørgen Beck Hansen, Stefania Xella, Peter Henrik Hansen, Troels Christian Petersen, Lotte Ansgaard Thomsen, Almut Maria Pingel, Ask Emil Løvschall-Jensen, Alejandro Alonso DiazJames William Monk, Lars Egholm Pedersen, Graig Wiglesworth, Gorm Aske Gram Krohn Galster

19 Citations (Scopus)
39 Downloads (Pure)

Abstract

A selection of searches by the ATLAS experiment at the LHC for the electroweak production of SUSY particles are used to study their impact on the constraints on dark matter candidates. The searches use 20 fb−1 of proton-proton collision data at s=8 TeV. A likelihood-driven scan of a five-dimensional effective model focusing on the gaugino-higgsino and Higgs sector of the phenomenological minimal supersymmetric Standard Model is performed. This scan uses data from direct dark matter detection experiments, the relic dark matter density and precision flavour physics results. Further constraints from the ATLAS Higgs mass measurement and SUSY searches at LEP are also applied. A subset of models selected from this scan are used to assess the impact of the selected ATLAS searches in this five-dimensional parameter space. These ATLAS searches substantially impact those models for which the mass m(χ˜10) of the lightest neutralino is less than 65 GeV, excluding 86% of such models. The searches have limited impact on models with larger m(χ˜10) due to either heavy electroweakinos or compressed mass spectra where the mass splittings between the produced particles and the lightest supersymmetric particle is small.[Figure not available: see fulltext.]

Original languageEnglish
Article number175
JournalJournal of High Energy Physics
Volume2016
Issue number9
ISSN1126-6708
DOIs
Publication statusPublished - 1 Sept 2016

Fingerprint

Dive into the research topics of 'Dark matter interpretations of ATLAS searches for the electroweak production of supersymmetric particles in root s=8 TeV proton-proton collisions'. Together they form a unique fingerprint.

Cite this