TY - JOUR
T1 - Dark Classics in Chemical Neuroscience
T2 - NBOMes
AU - Poulie, Christian Bernard Matthijs
AU - Jensen, Anders A
AU - Halberstadt, Adam
AU - Kristensen, Jesper L
PY - 2020/12/2
Y1 - 2020/12/2
N2 - N-Benzylphenethylamines, commonly known as NBOMes, are synthetic psychedelic compounds derived from the phenethylamine class of psychedelics (2C-X compounds), which originally have been derived from the naturally occurring alkaloid mescaline. Analogously to their parent compounds and other classical psychedelics, such as psilocybin and lysergic acid diethylamide (LSD), NBOMes are believed to exert their main pharmacological effects through activation of serotonin 2A (5-HT2A) receptors. Since their introduction as New Psychoactive Substances (NPSs) in 2010, NBOMes have been widely used for recreational purposes; this has resulted in numerous cases of acute toxicity, sometimes with lethal outcomes, leading to the classification of several NBOMes as Schedule I substances in 2013. However, in addition to their recreational use, the NBOMe class has yielded several important biochemical tools, including [11C]Cimbi-36, which is now being used in positron emission tomography (PET) studies of the 5-HT2A and 5-HT2C receptors in the mammalian brain, and 25CN-NBOH, one of the most selective 5-HT2A receptor agonists developed to date. In this Review, the history, chemistry, structure-activity relationships, ADME (absorption, distribution, metabolism, and excretion) properties, and safety profiles of NBOMes will be outlined and discussed.
AB - N-Benzylphenethylamines, commonly known as NBOMes, are synthetic psychedelic compounds derived from the phenethylamine class of psychedelics (2C-X compounds), which originally have been derived from the naturally occurring alkaloid mescaline. Analogously to their parent compounds and other classical psychedelics, such as psilocybin and lysergic acid diethylamide (LSD), NBOMes are believed to exert their main pharmacological effects through activation of serotonin 2A (5-HT2A) receptors. Since their introduction as New Psychoactive Substances (NPSs) in 2010, NBOMes have been widely used for recreational purposes; this has resulted in numerous cases of acute toxicity, sometimes with lethal outcomes, leading to the classification of several NBOMes as Schedule I substances in 2013. However, in addition to their recreational use, the NBOMe class has yielded several important biochemical tools, including [11C]Cimbi-36, which is now being used in positron emission tomography (PET) studies of the 5-HT2A and 5-HT2C receptors in the mammalian brain, and 25CN-NBOH, one of the most selective 5-HT2A receptor agonists developed to date. In this Review, the history, chemistry, structure-activity relationships, ADME (absorption, distribution, metabolism, and excretion) properties, and safety profiles of NBOMes will be outlined and discussed.
U2 - 10.1021/acschemneuro.9b00528
DO - 10.1021/acschemneuro.9b00528
M3 - Journal article
C2 - 31657895
SN - 1948-7193
JO - ACS Chemical Neuroscience
JF - ACS Chemical Neuroscience
ER -