TY - JOUR
T1 - Correlation between enzyme activity an stability of a protease, an alpha-amaylase and a lipase in a simplified liquid laundry detergent system, determined by differential scanning calorimetry
AU - Lund, Henrik
AU - Kaasgaard, Svend Gunnar
AU - Skagerlind, Peter
AU - Jørgensen, Lene
AU - Jørgensen, Christian Isak
AU - van de Weert, Marco
PY - 2012/1
Y1 - 2012/1
N2 - Enzymes used during washing in laundry detergents have become a universal tool to lower energy consumption and to generate a broad, consumer-relevant, cleaning effect. However, the stability of these enzymes remains a major obstacle, particularly in liquid products, due to increased interaction between the enzymes and the other components of the detergent. The process of formulation involves extensive shelf-life stability studies where residual enzyme activities are correlated with formulation variations. As a way to improve the formulation process, we evaluated the possible use of differential scanning calorimetry (DSC) as a tool to predict enzyme stability in liquid detergents. Thus, residual enzyme activity after incubation in a multitude of formulations was determined and compared to thermodynamic data obtained by DSC. The enzymes tested were a protease, an alpha-amylase and a lipase. We found a strong linear correlation between DSC-derived data, in particular T max (temperature at peak maximum of the transition from the folded to unfolded state) and enzyme activity studies with R 2-values: 0.98 (protease), 0.99 (amylase) and 0.98 (lipase), respectively. Thus, a higher T max for the same enzyme in a particular formulation is directly proportional to longer storage stability. These results suggest a new way of greatly accelerating this type of formulation study, allowing estimation of enzyme compatibility with a specific formulation on a daily, rather than the weekly or monthly basis used at present.
AB - Enzymes used during washing in laundry detergents have become a universal tool to lower energy consumption and to generate a broad, consumer-relevant, cleaning effect. However, the stability of these enzymes remains a major obstacle, particularly in liquid products, due to increased interaction between the enzymes and the other components of the detergent. The process of formulation involves extensive shelf-life stability studies where residual enzyme activities are correlated with formulation variations. As a way to improve the formulation process, we evaluated the possible use of differential scanning calorimetry (DSC) as a tool to predict enzyme stability in liquid detergents. Thus, residual enzyme activity after incubation in a multitude of formulations was determined and compared to thermodynamic data obtained by DSC. The enzymes tested were a protease, an alpha-amylase and a lipase. We found a strong linear correlation between DSC-derived data, in particular T max (temperature at peak maximum of the transition from the folded to unfolded state) and enzyme activity studies with R 2-values: 0.98 (protease), 0.99 (amylase) and 0.98 (lipase), respectively. Thus, a higher T max for the same enzyme in a particular formulation is directly proportional to longer storage stability. These results suggest a new way of greatly accelerating this type of formulation study, allowing estimation of enzyme compatibility with a specific formulation on a daily, rather than the weekly or monthly basis used at present.
KW - Former Faculty of Pharmaceutical Sciences
U2 - 10.1007/s11743-011-1272-5
DO - 10.1007/s11743-011-1272-5
M3 - Journal article
SN - 1097-3958
VL - 15
SP - 9
EP - 21
JO - Journal of Surfactants and Detergents
JF - Journal of Surfactants and Detergents
ER -