Convolutional neural networks for segmentation and object detection of human semen

Malte Stær Nissen*, Oswin Krause, Kristian Almstrup, Søren Kjærulff, Torben T. Nielsen, Mads Nielsen

*Corresponding author for this work
5 Citations (Scopus)

Abstract

We compare a set of convolutional neural network (CNN) architectures for the task of segmenting and detecting human sperm cells in an image taken from a semen sample. In contrast to previous work, samples are not stained or washed to allow for full sperm quality analysis, making analysis harder due to clutter. Our results indicate that training on full images is superior to training on patches when class-skew is properly handled. Full image training including up-sampling during training proves to be beneficial in deep CNNs for pixel wise accuracy and detection performance. Predicted sperm cells are found by using connected components on the CNN predictions. We investigate optimization of a threshold parameter on the size of detected components. Our best network achieves 93.87% precision and 91.89% recall on our test dataset after thresholding outperforming a classical image analysis approach.

Original languageEnglish
Title of host publicationImage Analysis : 20th Scandinavian Conference, SCIA 2017, Tromsø, Norway, June 12–14, 2017, Proceedings, Part I
EditorsPuneet Sharma, Filippo Maria Bianchi
Number of pages10
VolumePart 1
PublisherSpringer
Publication date2017
Pages397-406
ISBN (Print)978-3-319-59125-4
ISBN (Electronic)978-3-319-59126-1
DOIs
Publication statusPublished - 2017
Event20th Scandinavian Conference on Image Analysis - Tromsø, Norway
Duration: 12 Jun 201714 Jun 2017
Conference number: 20

Conference

Conference20th Scandinavian Conference on Image Analysis
Number20
Country/TerritoryNorway
CityTromsø
Period12/06/201714/06/2017
SeriesLecture notes in computer science
Volume10269
ISSN0302-9743

Keywords

  • Convolutional neural networks
  • Deep learning
  • Fertility examination
  • Human sperm
  • Segmentation

Fingerprint

Dive into the research topics of 'Convolutional neural networks for segmentation and object detection of human semen'. Together they form a unique fingerprint.

Cite this