TY - JOUR
T1 - Contraction induced secretion of VEGF from skeletal muscle cells is mediated by adenosine
AU - Høier, Birgitte
AU - Olsen, Karina
AU - Nyberg, Michael Permin
AU - Bangsbo, Jens
AU - Hellsten, Ylva
N1 - CURIS 2010 5200 083
PY - 2010/9
Y1 - 2010/9
N2 - The role of adenosine and contraction for secretion of vascular endothelial growth factor (VEGF) in skeletal muscle was investigated in human subjects and rat primary skeletal muscle cells. Microdialysis probes were inserted in the thigh muscle of seven male subjects, and dialysate was collected at rest, during infusion of adenosine, and during knee extensor exercise. The dialysate was analyzed for content of VEGF protein and adenosine. The mechanism of VEGF secretion from muscle cells in culture was examined in resting and electrostimulated cells and in response to the adenosine analog NECA and the adenosine A2A receptor specific analog CGS-21680. Adenosine receptors A1, A2A, and A2B were blocked with DPCPX, ZM-241385, and enprofylline, respectively. cAMP-dependent protein kinase A (PKA) and mitogen-activated protein kinase (MAPK) were inhibited by H-89 and PD-98509, respectively. The human experiment showed that adenosine infusion enhanced (P < 0.05) the interstitial concentration of VEGF protein approximately fourfold above baseline. Exercise increased (P < 0.05) the interstitial VEGF concentration approximately sixfold above rest in parallel with an approximately threefold increase in adenosine concentration. In accordance, in cultured muscle cells, NECA and contraction caused secretion of VEGF (P < 0.05). The contraction-induced secretion of VEGF was abolished by the A2B antagonist enprofylline and by inhibition of PKA or MAPK. The results demonstrate that adenosine causes secretion of VEGF from human skeletal muscle cells and that the contraction-induced secretion of VEGF protein is partially mediated via adenosine acting on A2B adenosine receptors. Moreover, the contraction-induced secretion of VEGF protein from muscle is dependent on both PKA and MAPK activation, but only the MAPK pathway appears to be adenosine dependent, revealing involvement of additional pathways in VEGF secretion.
AB - The role of adenosine and contraction for secretion of vascular endothelial growth factor (VEGF) in skeletal muscle was investigated in human subjects and rat primary skeletal muscle cells. Microdialysis probes were inserted in the thigh muscle of seven male subjects, and dialysate was collected at rest, during infusion of adenosine, and during knee extensor exercise. The dialysate was analyzed for content of VEGF protein and adenosine. The mechanism of VEGF secretion from muscle cells in culture was examined in resting and electrostimulated cells and in response to the adenosine analog NECA and the adenosine A2A receptor specific analog CGS-21680. Adenosine receptors A1, A2A, and A2B were blocked with DPCPX, ZM-241385, and enprofylline, respectively. cAMP-dependent protein kinase A (PKA) and mitogen-activated protein kinase (MAPK) were inhibited by H-89 and PD-98509, respectively. The human experiment showed that adenosine infusion enhanced (P < 0.05) the interstitial concentration of VEGF protein approximately fourfold above baseline. Exercise increased (P < 0.05) the interstitial VEGF concentration approximately sixfold above rest in parallel with an approximately threefold increase in adenosine concentration. In accordance, in cultured muscle cells, NECA and contraction caused secretion of VEGF (P < 0.05). The contraction-induced secretion of VEGF was abolished by the A2B antagonist enprofylline and by inhibition of PKA or MAPK. The results demonstrate that adenosine causes secretion of VEGF from human skeletal muscle cells and that the contraction-induced secretion of VEGF protein is partially mediated via adenosine acting on A2B adenosine receptors. Moreover, the contraction-induced secretion of VEGF protein from muscle is dependent on both PKA and MAPK activation, but only the MAPK pathway appears to be adenosine dependent, revealing involvement of additional pathways in VEGF secretion.
U2 - 10.1152/ajpheart.00082.2010
DO - 10.1152/ajpheart.00082.2010
M3 - Journal article
C2 - 20543089
SN - 0363-6135
VL - 299
SP - H857-H862
JO - American Journal of Physiology - Heart and Circulatory Physiology
JF - American Journal of Physiology - Heart and Circulatory Physiology
IS - 3
ER -