Abstract
Aim: To investigate if exercise intensity and Ca2+ signalling regulate Na+,K+ pump mRNA expression in skeletal muscle. Methods: The importance of exercise intensity was evaluated by having trained and untrained humans perform intense intermittent and prolonged exercise. The importance of Ca2+ signalling was investigated by electrical stimulation of rat soleus and extensor digitorum longus (EDL) muscles in combination with studies of cell cultures. Results: Intermittent cycling exercise at ∼85% of VO2peak increased (P < 0.05) α1 and β1 mRNA expression ∼2-fold in untrained and trained subjects. In trained subjects, intermittent exercise at ∼70% of VO2peak resulted in a less (P < 0.05) pronounced increase (∼1.4-fold; P < 0.05) for α1 and no change in β1 mRNA. Prolonged low intensity exercise increased (P < 0.05) mRNA expression of α1 ∼3.0-fold and α2 ∼1.8-fold in untrained but not in trained subjects. Electrical stimulation of rat soleus, but not EDL, muscle increased (P < 0.05) α1 mRNA expression, but not when combined with KN62 and cyclosporin A incubation. Ionomycin incubation of cultured primary rat skeletal muscle cells increased (P < 0.05) α1 and reduced (P < 0.001) α2 mRNA expression and these responses were abolished (P < 0.05) by co-incubation with cyclosporin A or KN62. Conclusion: (1) Exercise-induced increases in Na+,K + pump α1 and β1 mRNA expression in trained subjects are more pronounced after high- than after moderate- and low-intensity exercise. (2) Both prolonged low and short-duration high-intensity exercise increase α1 mRNA expression in untrained subjects. (3) Ca2+i regulates α1 mRNA expression in oxidative muscles via Ca 2+/calmodulin-dependent protein kinase (CaMK) and calcineurin signalling pathways.
Original language | English |
---|---|
Journal | Acta Physiologica (Print Edition) |
Volume | 198 |
Issue number | 4 |
Pages (from-to) | 487-498 |
Number of pages | 12 |
ISSN | 1748-1708 |
DOIs | |
Publication status | Published - Apr 2010 |