Construction of a pathological risk model of occult lymph node metastases for prognostication by semi-automated image analysis of tumor budding in early-stage oral squamous cell carcinoma

Nicklas Juel Pedersen, David Hebbelstrup Jensen, Giedrius Lelkaitis, Katalin Kiss, Birgitte Charabi, Lena Specht, Christian von Buchwald*

*Corresponding author for this work
13 Citations (Scopus)
46 Downloads (Pure)

Abstract

It is challenging to identify at diagnosis those patients with early oral squamous cell carcinoma (OSCC), who have a poor prognosis and those that have a high risk of harboring occult lymph node metastases. The aim of this study was to develop a standardized and objective digital scoring method to evaluate the predictive value of tumor budding. We developed a semi-automated image-analysis algorithm, Digital Tumor Bud Count (DTBC), to evaluate tumor budding. The algorithm was tested in 222 consecutive patients with early-stage OSCC and major endpoints were overall (OS) and progression free survival (PFS). We subsequently constructed and crossvalidated a binary logistic regression model and evaluated its clinical utility by decision curve analysis. A high DTBC was an independent predictor of both poor OS and PFS in a multivariate Cox regression model. The logistic regression model was able to identify patients with occult lymph node metastases with an area under the curve (AUC) of 0.83 (95% CI: 0.78-0.89, P < 0.001) and a 10-fold cross-validated AUC of 0.79. Compared to other known histopathological risk factors, the DTBC had a higher diagnostic accuracy. The proposed, novel risk model could be used as a guide to identify patients who would benefit from an up-front neck dissection.

Original languageEnglish
JournalOncoTarget
Volume8
Issue number11
Pages (from-to)18227-18237
Number of pages11
ISSN1949-2553
DOIs
Publication statusPublished - Feb 2017

Keywords

  • Digital pathology
  • Oral squamous cell carcinoma
  • REMARK guidelines
  • Tumor budding

Fingerprint

Dive into the research topics of 'Construction of a pathological risk model of occult lymph node metastases for prognostication by semi-automated image analysis of tumor budding in early-stage oral squamous cell carcinoma'. Together they form a unique fingerprint.

Cite this