Abstract
Aggregation and fibrillation of beta(2)-microglobulin are hallmarks of dialysis-related amyloidosis. We characterize perturbations of the native conformation of beta(2)-microglobulin that may precede fibril formation. For a beta(2)-microglobulin variant cleaved at lysine 58, we show using capillary electrophoresis that two conformers spontaneously exist in aqueous buffers at neutral pH. Upon treatment of wild-type beta(2)-microglobulin with acetonitrile or trifluoroethanol, two conformations were also observed. These conformations were in equilibrium dependent on the sample temperature and the percentage of organic solvent present. Circular dichroism showed a loss of beta-structures and gain of alpha-helices. Reversal to the native conformation occurred when removing the organics. Affinity capillary electrophoresis experiments showed increased specific interactions of the nonnative beta(2)-microglobulin conformation with the dyes 8-anilino-1-naphthalene sulfonic acid and Congo red. The observations may relate to early folding events prior to amyloid fibrillation and facilitate the development of methods to detect and inhibit pro-amyloid protein and peptide conformations.
Original language | English |
---|---|
Journal | Journal of Biological Chemistry |
Volume | 276 |
Issue number | 35 |
Pages (from-to) | 32657-62 |
Number of pages | 5 |
ISSN | 0021-9258 |
DOIs | |
Publication status | Published - 2001 |