Condensers with Touching Plates and Constrained Minimum Riesz and Green Energy Problems

P. D. Dragnev, B. Fuglede, D. P. Hardin, E. B. Saff, N. Zorii*

*Corresponding author for this work
4 Citations (Scopus)

Abstract

We study minimum energy problems relative to the α-Riesz kernel |x−y|α−n, α∈(0,2], over signed Radon measures μ on Rn, n⩾3, associated with a generalized condenser (A1,A2), where A1 is a relatively closed subset of a domain D and A2=Rn∖D. We show that although A2∩ClRnA1 may have nonzero capacity, this minimum energy problem is uniquely solvable (even in the presence of an external field) if we restrict ourselves to μ with μ+⩽ξ, where a constraint ξ is properly chosen. We establish the sharpness of the sufficient conditions on the solvability thus obtained, provide descriptions of the weighted α-Riesz potentials of the solutions, single out their characteristic properties, and analyze their supports. The approach developed is mainly based on the establishment of an intimate relationship between the constrained minimum α-Riesz energy problem over signed measures associated with (A1,A2) and the constrained minimum α-Green energy problem over positive measures carried by A1. The results are illustrated by examples.
Original languageEnglish
JournalConstructive Approximation
Volume50
Issue number3
Pages (from-to)369–401
Number of pages33
ISSN0176-4276
DOIs
Publication statusPublished - 1 Dec 2019

Keywords

  • Condensers with touching plates
  • Constrained minimum energy problems
  • External fields
  • α-Green kernels
  • α-Riesz kernels

Fingerprint

Dive into the research topics of 'Condensers with Touching Plates and Constrained Minimum Riesz and Green Energy Problems'. Together they form a unique fingerprint.

Cite this