Abstract
Prediction of chemical shifts in organic cations is known to be a challenge. In this article we meet this challenge for α-protonated alkylpyrroles, a class of compounds not yet studied in this context, and present a combined experimental and theoretical study of the 13 C and 1 H chemical shifts in three selected pyrroles. We have investigated the importance of the solvation model, basis set, and quantum chemical method with the goal of developing a simple computational protocol, which allows prediction of 13 C and 1 H chemical shifts with sufficient accuracy for identifying such compounds in mixtures. We find that density functional theory with the B3LYP functional is not sufficient for reproducing all 13 C chemical shifts, whereas already the simplest correlated wave function model, Møller–Plesset perturbation theory (MP2), leads to almost perfect agreement with the experimental data. Treatment of solvent effects generally improves the agreement with experiment to some extent and can in most cases be accomplished by a simple polarizable continuum model. The only exception is the NH proton, which requires inclusion of explicit solvent molecules in the calculation.
Original language | English |
---|---|
Journal | ChemPhysChem |
Volume | 20 |
Issue number | 1 |
Pages (from-to) | 78-91 |
Number of pages | 14 |
ISSN | 1439-4235 |
DOIs | |
Publication status | Published - 7 Jan 2019 |
Keywords
- Faculty of Science
- MP2
- B3LYP
- Solvent effects
- density functional theory (DFT)
- NMR
- chemical shift
- protonated alkylpyrroles